- 基于MATLAB机器学习、深度学习实践技术应用
梦想的初衷~
机器学习人工智能matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。原文链接https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=224
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 深度学习学习笔记(第30周)
qq_51339898
深度学习人工智能
一、摘要本周报的目的在于汇报第30周的学习成果,本周主要聚焦于基于深度学习的图像分割领域的常用模型U-net。 U-net是最常用、最简单的一种分割模型,在2015年被提出。UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。UNet算法的关键创新是在解码器中引入了跳跃连接(SkipConnections),即将编码器中的特征图与解码器中对应的特征图进行连接
- 2025毕设springboot MVC框架下的精品课程管理平台论文+源码
zhihao501
课程设计springbootmvc
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景在教育信息化的大背景下,精品课程管理平台的构建成为提升教学质量和效率的重要手段。当前,许多高校和教育机构仍然采用传统的课程管理方式,不仅效率低下,还难以满足学生日益增长的个性化学习需求。SpringBootMVC框架作为一种轻量级、高效的JavaWeb开发框架,以其简洁的设计理
- 深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能tensorflowpython
深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程在人工智能领域中,算子(Operator)作为深度学习模型的基础执行单元,决定了整个模型的计算性能和结果准确性。随着硬件平台的多样化,如何将第三方深度学习框架中的算子适配到特定的硬件平台变得至关重要。本文将深入探讨如何在TensorFlow框架下开发适配昇腾AI处理器的算子插件,通过解析算子属性映射、数据排布
- 深入解析框架适配开发:基于CANN平台的自定义算子开发与第三方框架适配全流程详解
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析框架适配开发:基于CANN平台的自定义算子开发与第三方框架适配全流程详解随着深度学习的发展,不同的深度学习框架如TensorFlow、PyTorch、ONNX等在AI开发者社区中占据了重要地位。然而,针对某些硬件平台(如华为昇腾AI处理器),算子库中的算子并非都已经适配了所有主流框架。为了解决这一问题,框架适配开发应运而生,它允许开发者将已存在于算子库中的算子适配到其他未支持的第三方框架上
- 深入解析CANN算子开发:TBE与AI CPU算子类型及其开发方法全指南
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析CANN算子开发:TBE与AICPU算子类型及其开发方法全指南在现代AI计算领域中,高效的算子开发对于优化深度学习模型的推理与训练至关重要。CANN(ComputeArchitectureforNeuralNetworks)作为华为AscendAI处理器的开发平台,提供了两种类型的算子开发支持:TBE算子和AICPU算子。每种算子类型针对不同的计算任务和硬件架构,开发者需要根据具体场景选择
- 深度学习-90-大型语言模型LLM之基于LM Studio本地化部署运行自己的大模型
皮皮冰燃
深度学习深度学习语言模型人工智能
文章目录1LMStudio1.1LMStudio的优点1.2LMStudio的安装1.3配置国内下载模型2LMStudio的应用2.1查找/下载模型2.2模型名称的含义2.3查看已经下载的模型2.4使用聊天3配置服务端3.1启动服务3.2支持的接口3.2.1列出当前加载的模型/v1/models3.2.2聊天补全/v1/chat/completions3.2.3文本补全/v1/completion
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- 基于TSN的实时通信网络延迟评估技术
神一样的老师
论文阅读分享网络
论文标题:ATSN-basedTechniqueforReal-TimeLatencyEvaluationinCommunicationNetworks作者信息:AlbertoMorato,ClaudioZunino,ManuelCheminod,StefanoVitturi,来自意大利国家研究委员会,CNR-IEIIT。电子邮件:{alberto.morato,claudio.zunino,ma
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- 有趣的python代码实例_Python之路:200个Python有趣的小例子一网打尽
weixin_39845406
有趣的python代码实例
概述博主最近在学习python,看完了一整套学习视频,然后呃呃呃,还是用不太流畅。碰巧在全球最大的同性交友论坛GayHub(呸!是开源代码托管平台Github)上面发现了一个项目,该项目列举了200多个Python小例子,Python基础、Python坑点、Python字符串和正则、Python绘图、Python日期和文件、Web开发、数据科学、机器学习、深度学习、TensorFlow、Pytor
- 战场物联网:通信挑战与最新解决方案综述
神一样的老师
论文阅读分享物联网物联网
论文标题TheInternetofBattleThings:ASurveyonCommunicationChallengesandRecentSolutions作者信息RachelKufakunesu,HermanMyburgh,AllanDeFreitas论文出处DiscoverInternetofThings(2025)5:3|Theinternetofbattlethings:asurvey
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- 物联网:全面概述、架构、应用、仿真工具、挑战和未来方向
神一样的老师
论文阅读分享物联网物联网
中文论文标题:物联网:全面概述、架构、应用、仿真工具、挑战和未来方向英文论文标题:InternetofThings:acomprehensiveoverview,architectures,applications,simulationtools,challengesandfuturedirections作者信息:AnitaChoudhary论文出处:DiscoverInternetofThing
- AAAI2024论文解读|Towards Fairer Centroids in k-means Clustering面向更公平的 k 均值聚类中心
paixiaoxin
文献阅读论文合集支持向量机机器学习人工智能聚类公平性k均值聚类质心代表性群体代表性公平性
论文标题TowardsFairerCentroidsink-meansClustering面向更公平的k均值聚类中心论文链接TowardsFairerCentroidsink-meansClustering论文下载论文作者StanleySimoes,DeepakP,MuirisMacCarthaigh内容简介本文提出了一种新的聚类级质心公平性(Cluster-levelCentroidFairne
- JAVA计算机毕业设计基于SpringBoot的个人理财系统(附源码+springboot+开题+论文)
杰简程序毕设
java课程设计springboot
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着经济的快速发展和人们生活水平的日益提高,个人理财已成为现代生活中不可或缺的一部分。然而,传统的理财方式往往存在着效率低下、信息不对称、服务不便捷等问题,无法满足现代人对于个性化、高效理财的需求。在这个背景下,基于SpringBoot的个人理财系统应运而生。该系统旨在通过互联
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 论文阅读笔记:AI+RPA
几道之旅
人工智能
文章目录论文题目下载地址论文摘要论文题目Challengesandopportunities:ImplementingRPAandAIinfrauddetectioninthebankingsector下载地址点击这里下载论文摘要在银行业中,将机器人流程自动化(RPA)和人工智能(AI)集成用于欺诈检测是一项重大变革,既带来了挑战,也带来了机遇。随着金融机构面临日益复杂的欺诈企图,RPA和AI成为
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- 机器视觉在医疗影像分析中的应用:助力放射科医生精准诊断
人工智能专属驿站
大数据人工智能计算机视觉
在现代医疗领域,影像学检查如X光、CT扫描和MRI等是诊断疾病的重要手段。随着技术的不断发展,机器视觉算法在医疗影像分析中的应用日益广泛,为放射科医生提供了强大的辅助工具,极大地提高了诊断的准确性和效率。本文将探讨机器视觉在医疗影像分析中的具体应用及其对医疗诊断带来的变革。一、机器视觉算法简介机器视觉是一种模拟人类视觉的科学技术,通过图像处理、模式识别和计算机视觉等技术,使计算机能够“看”懂图像中
- 【深度学习】Pytorch:导入导出模型参数
T0uken
深度学习pytorch人工智能
PyTorch是深度学习领域中广泛使用的框架,熟练掌握其模型参数的管理对于模型训练、推理以及部署非常重要。本文将全面讲解PyTorch中关于模型参数的操作,包括如何导出、导入以及如何下载模型参数。什么是模型参数模型参数是指深度学习模型中需要通过训练来优化的变量,如神经网络中的权重和偏置。这些参数存储在PyTorch的torch.nn.Module对象中,通过以下方式访问:importtorchim
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_