无人机+强化学习开源项目、工具包汇总(二)

1.IEEE无人机竞赛2022

https://github.com/engcang/ieee_uav_2022

相关论文:

E. Lee、D. Lee、H. Lim、S. Song 和 H. Myung,“ Non-uniform motion target tracking system for UAVs,”韩国机器人学会会议 (KRoC),2022 年。

2.固定翼飞行控制的深度强化学习

这是一个深度 Q 网络 (DQN) 强化学习代理,它可以在模拟器中将固定翼飞机导航到目标航路点,同时避开静止和移动的障碍物。

GitHub - anassinator/dqn-obstacle-avoidance: Deep Reinforcement Learning for Fixed-Wing Flight Control with Deep Q-Network

3.正在尝试使用强化学习算法开发固定翼姿态控制系统。截至目前,此代码适用于 XPlane 11 和 QLearning 以及 Deep QLearning。

GitHub - JDatPNW/QPlane: Fixed Wing Flight Simulation Environment for Reinforcement Learning

4.学习飞行:具有强化学习的混合无人机的计算控制器设计

GitHub - eanswer/LearningToFly: [SIGGRAPH 2019] Learning to Fly: Computational Controller Design for Hybrid UAVs with Reinforcement Learning

参考文献:

Learning to Fly: Computational Controller Design for Hybrid UAVs with Reinforcement Learning

5.用于无人机的基于人工智能的控制器的 ROS 包

GitHub - andriyukr/controllers: ROS package for AI-based controllers for UAVs

参考文献:

Input Uncertainty Sensitivity Enhanced Nonsingleton Fuzzy Logic Controllers for Long-Term Navigation of Quadrotor UAVs

Type-2 Fuzzy Elliptic Membership Functions for Modeling Uncertainty

Intuit before tuning: Type-1 and type-2 fuzzy logic controllers

An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots

Novel Levenberg–Marquardt Based Learning Algorithm for Unmanned Aerial Vehicles

你可能感兴趣的:(无人机,开源)