- 【目标检测数据集】卡车数据集1073张VOC+YOLO格式
熬夜写代码的平头哥∰
目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1073标注数量(xml文件个数):1073标注数量(txt文件个数):1073标注类别数:1标注类别名称:["truck"]每个类别标注的框数:truck框数=1120总框数:1120使用标注工具:labelImg标注
- 番茄西红柿叶子病害分类数据集12882张11类别
futureflsl
数据集分类数据挖掘人工智能
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):12882分类类别数:11类别名称:["Bacterial_Spot_Bacteria","Early_Blight_Fungus","Healthy","Late_Blight_Water_Mold","Leaf_Mold_Fungus","Powdery
- [数据集][目标检测]汽车头部尾部检测数据集VOC+YOLO格式5319张3类别
FL1623863129
数据集目标检测汽车YOLO
数据集制作单位:未来自主研究中心(FIRC)版权单位:未来自主研究中心(FIRC)版权声明:数据集仅仅供个人使用,不得在未授权情况下挂淘宝、咸鱼等交易网站公开售卖,由此引发的法律责任需自行承担数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):5319标注数量(xml文件
- CV、NLP、数据控掘推荐、量化
海的那边-
AI算法自然语言处理人工智能
下面是对CV(计算机视觉)、NLP(自然语言处理)、数据挖掘推荐和量化的简要概述及其应用领域的介绍:1.CV(计算机视觉,ComputerVision)定义:计算机视觉是一门让计算机能够从图像或视频中提取有用信息,并做出决策的学科。它通过模拟人类的视觉系统来识别、处理和理解视觉信息。主要任务:图像分类:识别图像中的物体并分类,比如猫、狗、车等。目标检测:在图像或视频中定位并识别多个对象,如人脸检测
- 【目标检测数据集】番茄叶片病害数据集13940张9类VOC+YOLO格式
熬夜写代码的平头哥∰
数据集目标检测YOLO目标跟踪
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):13946标注数量(xml文件个数):13946标注数量(txt文件个数):13946标注类别数:9标注类别名称:["EarlyBlight","Healthy","LateBlight","LeafMiner","Le
- [数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2757标注数量(xml文件个数):2757标注数量(txt文件个数):2757标注类别数:4标注类别名称:["Platelets","RBC","WBC","sicklecell"]每个类别标注的框数:Platelet
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 【小贪】项目实战——Zero-shot根据文字提示分割出图片目标掩码
贪钱算法还我头发
#DeepLearning#ComputerVisionAI目标检测深度学习python语义分割Zero-shot
目标描述给定RGB视频或图片,目标是分割出图像中的指定目标掩码。我们需要复现两个Zero-shot的开源项目,分别为IDEA研究院的GroundingDINO和Facebook的SAM。首先使用目标检测方法GroundingDINO,输入想检测目标的文字提示,可以获得目标的anchorbox。将上一步获得的box信息作为SAM的提示,分割出目标mask。具体效果如下(测试数据来自VolumeDef
- yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距
毕设宇航
QQ767172261yolov5单目测距
可实现对图片,视频,摄像头的检测项目概述本项目旨在实现一个集成了YOLOv5目标检测算法、图形用户界面(GUI)以及单目测距功能的系统。该系统能够对图片、视频或实时摄像头输入进行目标检测,并估算目标的距离。通过结合YOLOv5的强大检测能力和单目测距技术,系统能够在多种应用场景中提供高效、准确的目标检测和测距功能。技术栈YOLOv5:用于目标检测的深度学习模型。OpenCV:用于图像处理和单目测距
- 目标检测-YOLOv3
wydxry
深度学习目标检测YOLO深度学习
YOLOv3介绍YOLOv3(YouOnlyLookOnce,Version3)是YOLO系列目标检测模型的第三个版本,相较于YOLOv2有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对YOLOv3改进和优势的介绍,以及YOLOv3核心部分的代码展示。相比YOLOv2的改进与优势多尺度特征金字塔YOLOv3引入了FP
- SSD目标检测系统
月见樽
首发于个人博客系统结构system.pngSSD识别系统也是一种单步物体识别系统,即将提取物体位置和判断物体类别融合在一起进行,其最主要的特点是识别器用于判断物体的特征不仅仅来自于神经网络的输出,还来自于神经网络的中间结果。该系统分为以下几个部分:神经网络部分:用作特征提取器,提取图像特征识别器:根据神经网络提取的特征,生成包含物品位置和类别信息的候选框(使用卷积实现)后处理:对识别器提取出的候选
- 深度学习目标检测入门COCO数据集
日暮途远z
深度学习目标检测人工智能
常见数据集类型:COCO数据集:Pytorch加载COCO数据集:COCO数据集的读取COCO_dataset=torchvision.datasets.CocoDetection(root="./dataset/val2017",annFile="./instances_val2017/instances_val2017.json")root(strorpathlib.Path)–Rootdir
- [数据集][目标检测]街道乱堆垃圾检测数据集VOC+YOLO格式94张1类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):94标注数量(xml文件个数):94标注数量(txt文件个数):94标注类别数:1标注类别名称:["baolu"]每个类别标注的框数:baolu框数=107总框数:107使用标注工具:labelImg标注规则:对类别进行
- YOLOv8改进 | 检测头篇 | YOLOv8引入DynamicHead检测头
小李学AI
YOLOv8有效涨点专栏YOLO深度学习目标检测计算机视觉机器学习人工智能
1.DynamicHead描述1.1摘要:在目标检测中,定位和分类相结合的复杂性导致了各种方法的蓬勃发展。以往的工作试图提高各种目标检测头的性能,但未能呈现出统一的观点。本文根据目标检测的特点,推导了一种新的动态头部框架,将目标检测头部与注意力统一起来。该方法通过在特征层次间、空间位置间和输出通道内协调组合多种自注意机制,在不增加计算开销的情况下显著提高了目标检测头的表示能力。进一步的实验表明,本
- 目标检测-YOLOv1
wydxry
深度学习目标检测YOLO人工智能
YOLOv1介绍YOLOv1(YouOnlyLookOnceversion1)是一种用于目标检测的深度学习算法,由JosephRedmon等人于2016年提出。它基于单个卷积神经网络,将目标检测任务转化为一个回归问题,通过在图像上划分网格并预测每个网格中是否包含目标以及目标的位置和类别来实现目标检测。YOLOv1的主要特点包括:快速的检测速度:相比于传统的目标检测算法,YOLOv1具有更快的检测速
- [数据集][目标检测]人脸口罩佩戴目标检测数据集VOC+YOLO格式8068张3类别
FL1623863129
数据集目标检测YOLO目标跟踪
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):8068标注数量(xml文件个数):8068标注数量(txt文件个数):8068标注类别数:3标注类别名称:["face_with_mask","face_without_mask","mask"]每个类别标注的框数:f
- 葡萄检测-目标检测数据集(包括VOC格式、YOLO格式)
数据集_深度学习
目标检测YOLO人工智能计算机视觉葡萄
葡萄检测-目标检测数据集(包括VOC格式、YOLO格式)数据集:链接:https://pan.baidu.com/s/1YMwAaSJc8H5SI0f8RVSidw?pwd=iygs提取码:iygs数据集信息介绍:共有1646张图像和一一对应的标注文件标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。标注的对象共有以下几种:[‘grape’]标注框的数量信息如下:(标注
- OpenCV项目实战-深度学习去阴影-图像去阴影
阿利同学
opencv深度学习人工智能阴影去除图像去阴影
往期热门博客项目回顾:计算机视觉项目大集合改进的yolo目标检测-测距测速路径规划算法图像去雨去雾+目标检测+测距项目交通标志识别项目yolo系列-重磅yolov9界面-最新的yolo姿态识别-3d姿态识别深度学习小白学习路线//正文开始!图像去阴影算法旨在改善图像质量并恢复阴影下物体的真实颜色与亮度这对于许多计算机视觉任务如物体识别、跟踪以及增强现实等至关重要。以下是一些图像去阴影算法的基本概述
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- [数据集][目标检测]井盖丢失未盖破损检测数据集VOC+YOLO格式2890张5类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2890标注数量(xml文件个数):2890标注数量(txt文件个数):2890标注类别数:5标注类别名称:["broke","circle","good","lose","uncovered"]每个类别标注的框数:br
- YOLOv8改进 更换轻量级网络结构
学yolo的小白
UpgradeYOLOv8进阶YOLO目标检测深度学习
一、GhostNet论文论文地址:1911.11907.pdf(arxiv.org)二、GhostNet结构GhostNet是一种高效的目标检测网络,具有较低的计算复杂度和较高的准确性。该网络采用了轻量级的架构,可以在计算资源有限的设备上运行,并能够快速地实时检测图像中的目标物体。GhostNet基于MobileNetV3的设计思路,采用了Ghost模块来减少网络参数数量,从而减少计算量并提高模型
- 【Python】成功解决TypeError: list indices must be integers or slices, not str
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决TypeError:listindicesmustbeintegersorslices,notstr欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆
- LeYOLO 用于目标检测的新型可扩展和高效CNN架构 | 最新轻量化SOTA! 5GFLOP下无对手!
迪菲赫尔曼
YOLOv8改进实战目标检测cnn架构pytorch深度学习轻量化
本改进已集成到YOLOv8-Magic框架。论文地址:https://arxiv.org/pdf/2406.14239代码地址:https://github.com/LilianHollard/LeYOLO/tree/main在深度神经网络中,计算效率对于目标检测至关重要,尤其是在新型模型更倾向于速度而非计算效率(浮点运算次数,FLOP)的情况下。这种演变在一定程度上忽视了嵌入式和面向移动的AI目
- Python 使用 Detectron2 进行目标检测 (Detectron2, CenterNet2, Detic)
Eric Woo X
PythonAIUbuntupython目标检测开发语言
代码说明代码主要是一个用来演示如何使用Detectron2进行目标检测的脚本。它可以从摄像头或视频文件中读取图像,并应用指定的配置文件进行目标检测。其中,Detectron2结合了CenterNet2和Detic进行目标检测。主要库介绍Detectron2Detectron2是由FacebookAIResearch开发的一个用于目标检测和实例分割的开源库。它提供了一系列预训练模型和灵活的配置系统,
- Transformer+目标检测,这一篇入门就够了
BIT可达鸭
▶深度学习-计算机视觉transformer深度学习目标检测计算机视觉自然语言处理
VisionTransformerforObjectDetection本文作者:Encoder-Decoder简介:Encoder-Decoder的缺陷:Attention机制:Self-Attention机制:Multi-HeadAttention:Transformer结构:图像分类之ViT:图像分类之PyramidViT:目标检测之DETR:目标检测之DeformableDETR:本文作者:
- 目标检测-YOLOv2
wydxry
深度学习目标检测YOLO人工智能
YOLOv2介绍YOLOv2(YouOnlyLookOnceversion2)是一种用于目标检测的深度学习模型,由JosephRedmon等人于2016年提出,并详细论述在其论文《YOLO9000:Better,Faster,Stronger》中。YOLOv2在保持高速检测的同时,显著提升了检测的精度和泛化能力,成为实时目标检测领域的重要算法之一。核心原理YOLOv2的核心原理是将目标检测问题转化
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 目标检测——YOLOv8模型预测结果
张飞飞飞飞飞
目标检测YOLO人工智能
fromultralyticsimportYOLOmodel_path=r'/home/zhangh/project1/workproject/YOLOv8/ultralytics/runs/train/2024723_yolov8n5/weights/best.pt'img_path=r'worker_data/images/val/%E9%93%B2%E6%96%97%E5%9D%90%E4%
- 基于yolov8的口罩佩戴检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习python
【算法介绍】基于YOLOv8的口罩佩戴检测系统是一款利用深度学习技术,特别是YOLOv8算法,实现高效、准确检测人脸是否佩戴口罩的系统。YOLOv8作为YOLO系列算法的最新版本,在检测速度和准确性上进行了显著优化,能够实时处理图像和视频数据。该系统通过训练大量标注了人脸和口罩状态(包括戴口罩、未戴口罩)的图片数据,构建了一个强大的目标检测模型。在实际应用中,该系统可以部署在公共场所如机场、车站、
- [数据集][目标检测]卫星遥感舰船检测数据集VOC+YOLO格式2238张17类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2238标注数量(xml文件个数):2238标注数量(txt文件个数):2238标注类别数:17标注类别名称:[“AircraftCarrier”,“AuxiliaryShips”,“Cargo”,“Commander”
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。