import argparse
import math
import random
import os
import numpy as np
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm
try:
import wandb
except ImportError:
wandb = None
from dataset import MultiResolutionDataset
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
from op import conv2d_gradfix
from non_leaking import augment, AdaptiveAugment
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
with conv2d_gradfix.no_weight_gradients():
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def set_grad_none(model, targets):
for n, p in model.named_parameters():
if n in targets:
p.grad = None
def train(args, loader, generator, discriminator, g_optim, d_optim, g_ema, device):
loader = sample_data(loader)
pbar = range(args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
ada_aug_p = args.augment_p if args.augment_p > 0 else 0.0
r_t_stat = 0
if args.augment and args.augment_p == 0:
ada_augment = AdaptiveAugment(args.ada_target, args.ada_length, 8, device)
sample_z = torch.randn(args.n_sample, args.latent, device=device)
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print("Done!")
break
real_img = next(loader)
real_img = real_img.to(device)
#生成器设置为False,判别器设置为True 固定生成器,训练判别器,为什么是先固定生成器,先训练判别器?与原始的不同?
requires_grad(generator, False)
requires_grad(discriminator, True)
#生成噪声
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
#得到输出fake_img 生成器身生成假图
fake_img, _ = generator(noise)
#如果使用数据增强:对原始数据和fake 数据都进行增强
if args.augment:
real_img_aug, _ = augment(real_img, ada_aug_p)
fake_img, _ = augment(fake_img, ada_aug_p)
else:
real_img_aug = real_img
# 对假图像和真图像进行判别器
fake_pred = discriminator(fake_img)
real_pred = discriminator(real_img_aug)
#计算d_logistic_loss
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict["d"] = d_loss
loss_dict["real_score"] = real_pred.mean()
loss_dict["fake_score"] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
if args.augment and args.augment_p == 0:
ada_aug_p = ada_augment.tune(real_pred)
r_t_stat = ada_augment.r_t_stat
d_regularize = i % args.d_reg_every == 0
#for lazy regularization 不用每次都计算 一般是每16个minibatches 计算一次 。见paper 的3.1 部分
if d_regularize:
real_img.requires_grad = True
if args.augment:
real_img_aug, _ = augment(real_img, ada_aug_p)
else:
real_img_aug = real_img
#对扩增后的图进行判别
real_pred = discriminator(real_img_aug)
#计算d_r1_loss
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
#此处为什么不是:r1_loss.backward(),这样做的目的是什么
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict["r1"] = r1_loss
#生成器设置为True,判别器设置为False
requires_grad(generator, True)
requires_grad(discriminator, False)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
fake_img, _ = augment(fake_img, ada_aug_p)
fake_pred = discriminator(fake_img)
#对结果计算非饱和损失函数计算
g_loss = g_nonsaturating_loss(fake_pred)
loss_dict["g"] = g_loss
generator.zero_grad()
g_loss.backward()
g_optim.step()
g_regularize = i % args.g_reg_every == 0
#for lazy regularization 不用每次都计算 一般是每4个minibatches 计算一次,见paper 的3.1 部分
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
noise = mixing_noise(path_batch_size, args.latent, args.mixing, device)
fake_img, latents = generator(noise, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
generator.zero_grad()
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict["path"] = path_loss
loss_dict["path_length"] = path_lengths.mean()
accumulate(g_ema, g_module, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced["d"].mean().item()
g_loss_val = loss_reduced["g"].mean().item()
r1_val = loss_reduced["r1"].mean().item()
path_loss_val = loss_reduced["path"].mean().item()
real_score_val = loss_reduced["real_score"].mean().item()
fake_score_val = loss_reduced["fake_score"].mean().item()
path_length_val = loss_reduced["path_length"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
f"augment: {ada_aug_p:.4f}"
)
)
if wandb and args.wandb:
wandb.log(
{
"Generator": g_loss_val,
"Discriminator": d_loss_val,
"Augment": ada_aug_p,
"Rt": r_t_stat,
"R1": r1_val,
"Path Length Regularization": path_loss_val,
"Mean Path Length": mean_path_length,
"Real Score": real_score_val,
"Fake Score": fake_score_val,
"Path Length": path_length_val,
}
)
if i % 100 == 0:
with torch.no_grad():
g_ema.eval()
sample, _ = g_ema([sample_z])
utils.save_image(
sample,
f"sample/{str(i).zfill(6)}.png",
nrow=int(args.n_sample ** 0.5),
normalize=True,
range=(-1, 1),
)
if i % 10000 == 0:
torch.save(
{
"g": g_module.state_dict(),
"d": d_module.state_dict(),
"g_ema": g_ema.state_dict(),
"g_optim": g_optim.state_dict(),
"d_optim": d_optim.state_dict(),
"args": args,
"ada_aug_p": ada_aug_p,
},
f"checkpoint/{str(i).zfill(6)}.pt",
)
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="StyleGAN2 trainer")
parser.add_argument("path", type=str, help="path to the lmdb dataset")
parser.add_argument('--arch', type=str, default='stylegan2', help='model architectures (stylegan2 | swagan)')
parser.add_argument(
"--iter", type=int, default=800000, help="total training iterations"
)
parser.add_argument(
"--batch", type=int, default=16, help="batch sizes for each gpus"
)
parser.add_argument(
"--n_sample",
type=int,
default=64,
help="number of the samples generated during training",
)
parser.add_argument(
"--size", type=int, default=256, help="image sizes for the model"
)
parser.add_argument(
"--r1", type=float, default=10, help="weight of the r1 regularization"
)
parser.add_argument(
"--path_regularize",
type=float,
default=2,
help="weight of the path length regularization",
)
parser.add_argument(
"--path_batch_shrink",
type=int,
default=2,
help="batch size reducing factor for the path length regularization (reduce memory consumption)",
)
parser.add_argument(
"--d_reg_every",
type=int,
default=16,
help="interval of the applying r1 regularization",
)
parser.add_argument(
"--g_reg_every",
type=int,
default=4,
help="interval of the applying path length regularization",
)
parser.add_argument(
"--mixing", type=float, default=0.9, help="probability of latent code mixing"
)
parser.add_argument(
"--ckpt",
type=str,
default=None,
help="path to the checkpoints to resume training",
)
parser.add_argument("--lr", type=float, default=0.002, help="learning rate")
parser.add_argument(
"--channel_multiplier",
type=int,
default=2,
help="channel multiplier factor for the model. config-f = 2, else = 1",
)
parser.add_argument(
"--wandb", action="store_true", help="use weights and biases logging"
)
parser.add_argument(
"--local_rank", type=int, default=0, help="local rank for distributed training"
)
parser.add_argument(
"--augment", action="store_true", help="apply non leaking augmentation"
)
parser.add_argument(
"--augment_p",
type=float,
default=0,
help="probability of applying augmentation. 0 = use adaptive augmentation",
)
parser.add_argument(
"--ada_target",
type=float,
default=0.6,
help="target augmentation probability for adaptive augmentation",
)
parser.add_argument(
"--ada_length",
type=int,
default=500 * 1000,
help="target duraing to reach augmentation probability for adaptive augmentation",
)
parser.add_argument(
"--ada_every",
type=int,
default=256,
help="probability update interval of the adaptive augmentation",
)
args = parser.parse_args()
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
if args.arch == 'stylegan2':
from model import Generator, Discriminator
elif args.arch == 'swagan':
from swagan import Generator, Discriminator
#好像有两个Generator,没有区别 生成器 判别器 生成器
generator = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
discriminator = Discriminator(
args.size, channel_multiplier=args.channel_multiplier
).to(device)
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
#作用是什么
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.ckpt is not None:
print("load model:", args.ckpt)
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
try:
ckpt_name = os.path.basename(args.ckpt)
args.start_iter = int(os.path.splitext(ckpt_name)[0])
except ValueError:
pass
generator.load_state_dict(ckpt["g"])
discriminator.load_state_dict(ckpt["d"])
g_ema.load_state_dict(ckpt["g_ema"])
g_optim.load_state_dict(ckpt["g_optim"])
d_optim.load_state_dict(ckpt["d_optim"])
if args.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
]
)
dataset = MultiResolutionDataset(args.path, transform, args.size)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
)
if get_rank() == 0 and wandb is not None and args.wandb:
wandb.init(project="stylegan 2")
train(args, loader, generator, discriminator, g_optim, d_optim, g_ema, device)