OpenCV图像处理——图像平滑

1图像噪声

由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。

1.1 椒盐噪声

椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。
OpenCV图像处理——图像平滑_第1张图片

1.2 高斯噪声

高斯噪声是指噪声密度函数服从高斯分布的一类噪声。由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。高斯随机变量z的概率密度函数由下式给出:

在这里插入图片描述
其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ^​2,称为z的方差。高斯函数的曲线如图所示。
OpenCV图像处理——图像平滑_第2张图片
OpenCV图像处理——图像平滑_第3张图片

2 图像平滑简介

图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪声,对图像进行平滑。

根据滤波器的不同可分为均值滤波,高斯滤波,中值滤波, 双边滤波。

2.1 均值滤波

采用均值滤波模板对图像噪声进行滤除。令Sxy表示中心在(x, y)点,尺寸为m×n 的矩形子图像窗口的坐标组。 均值滤波器可表示为:
在这里插入图片描述

由一个归一化卷积框完成的。它只是用卷积框覆盖区域所有像素的平均值来代替中心元素。
均值滤波的优点是算法简单,计算速度较快,缺点是在去噪的同时去除了很多细节部分,将图像变得模糊。

cv.blur(src, ksize, anchor, borderType)

参数:

src:输入图像
ksize:卷积核的大小
anchor:默认值 (-1,-1) ,表示核中心
borderType:边界类型

示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogsp.jpeg')
# 2 均值滤波
blur = cv.blur(img,(5,5))
# 3 图像显示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('均值滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()

OpenCV图像处理——图像平滑_第4张图片

2.2 高斯滤波

二维高斯是构建高斯滤波器的基础,其概率分布函数如下所示:
OpenCV图像处理——图像平滑_第5张图片
OpenCV图像处理——图像平滑_第6张图片正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。计算平滑结果时,只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。

高斯平滑在从图像中去除高斯噪声方面非常有效。

高斯平滑的流程:

首先确定权重矩阵
假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下:
OpenCV图像处理——图像平滑_第7张图片更远的点以此类推。

为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下:
OpenCV图像处理——图像平滑_第8张图片

这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。

OpenCV图像处理——图像平滑_第9张图片

计算高斯模糊
有了权重矩阵,就可以计算高斯模糊的值了。

假设现有9个像素点,灰度值(0-255)如下:

OpenCV图像处理——图像平滑_第10张图片每个点乘以对应的权重值:
OpenCV图像处理——图像平滑_第11张图片
得到
OpenCV图像处理——图像平滑_第12张图片

将这9个值加起来,就是中心点的高斯模糊的值。

对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯平滑。

cv2.GaussianBlur(src,ksize,sigmaX,sigmay,borderType)

参数:

src: 输入图像
ksize:高斯卷积核的大小,注意 : 卷积核的宽度和高度都应为奇数,且可以不同
sigmaX: 水平方向的标准差
sigmaY: 垂直方向的标准差,默认值为0,表示与sigmaX相同
borderType:填充边界类型

示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogGasuss.jpeg')
# 2 高斯滤波
blur = cv.GaussianBlur(img,(3,3),1)
# 3 图像显示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('高斯滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()

OpenCV图像处理——图像平滑_第13张图片

2.3 中值滤波

中值滤波是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值。

中值滤波对椒盐噪声(salt-and-pepper noise)来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。

cv.medianBlur(src, ksize )

参数:

src:输入图像
ksize:卷积核的大小

示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogsp.jpeg')
# 2 中值滤波
blur = cv.medianBlur(img,5)
# 3 图像展示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('中值滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()

OpenCV图像处理——图像平滑_第14张图片

总结

图像噪声

椒盐噪声:图像中随机出现的白点或者黑点
高斯噪声:噪声的概率密度分布是正态分布

图像平滑

均值滤波:算法简单,计算速度快,在去噪的同时去除了很多细节部分,将图像变得模糊

cv.blur()

高斯滤波: 去除高斯噪声

cv.GaussianBlur()

中值滤波: 去除椒盐噪声

cv.medianBlur()

你可能感兴趣的:(OpenCV图像处理,opencv,图像处理,计算机视觉)