基于pytorch搭建神经网络

准备数据

# 通过自定义的DiabetesDataset类,进行numpy->tensor的转换,以及调整数据类型
# train_data_BP--(10000,8)train_label_BP--(10000,1)
train_dataset = DiabetesDataset(train_data_BP, train_label_BP) 
# 传递数据集,设置样本数量为64,打乱数据,并行工作的数量为4
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True, num_workers=4)  # num_workers 多线程

DiabetesDataset类

class DiabetesDataset(Dataset):
    def __init__(self, data, label):
        self.len = data.shape[0]  # shape(多少行,多少列)
        self.x_data = torch.from_numpy(data)
        self.x_data = self.x_data.float()
        self.y_data = torch.from_numpy(label)
        self.y_data = self.y_data.float()

    # 通过数据的索引取出数据
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # 返回数据集的长度
    def __len__(self):
        return self.len

定义神经网络

用torch.nn.Module继承父类搭建BP神经网络

class Model(torch.nn.Module):
    def __init__(self):
        # 构造函数,相当于在声明,还没有进行应用
        super(Model, self).__init__()  # 调用父类初始化器
        self.linear1 = torch.nn.Linear(8, 12)
        self.linear2 = torch.nn.Linear(12, 20)
        self.linear3 = torch.nn.Linear(20, 15)
        self.linear4 = torch.nn.Linear(15, 10)
        self.linear5 = torch.nn.Linear(10, 4)
        self.linear6 = torch.nn.Linear(4, 1)
        self.RELU = torch.nn.ReLU()

    # 前向传播
    def forward(self, x):
        x = self.RELU(self.linear1(x))
        x = self.RELU(self.linear2(x))
        x = self.RELU(self.linear3(x))
        x = self.RELU(self.linear4(x))
        x = self.RELU(self.linear5(x))
        x = self.linear6(x)
        # 返回x
        return x

定义优化器和损失函数

# 构建BP网络
bp = Model().cuda()  # 把模型放在GPU

# 构造MSELoss
loss = torch.nn.MSELoss()
# Adam优化
optimizer = torch.optim.Adam(bp.parameters(), lr=lr)

BP训练

训练过程定义一个函数

def train(epoch,train_loader,model,criterion,optimizer):
    train_loss = 0.0
    count = 0
    for i, data in enumerate(train_loader, 0):
        # 将输入x和相应的标签y从数据中拿出来
        inputs, labels = data
        # 把数据放在GPU
        inputs = inputs.cuda()
        labels = labels.cuda()
        # 将输入送入模型中,求y的预测值
        y_pred = model(inputs)
        # 计算损失
        loss = criterion(y_pred, labels).cuda()
        # 梯度归零
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 优化更新
        optimizer.step()
        # 计算总的损失
        train_loss += loss.item()
        # 训练的次数
        count = i

    if epoch % 2 == 0:
        # 输出平均损失
        print("train loss:", train_loss/count, end=',')

    return model,train_loss/count

进行训练并保存最优模型

last_loss = 1000
for epoch in range(epochs):
    print("epoch:", epoch)
    trained_bp,current_best_loss = train(epoch, train_loader, bp, loss, optimizer)
    if is_save:
        if current_best_loss < last_loss:
            torch.save(trained_bp, 'pt2/BP_parameters_8i_6l_jb2_all.pt')
            print("Save model......")
            last_loss = current_best_loss

BP测试

def test(data,model):
    # 而对于tensor的计算操作,默认是要进行计算图的构建的,在这种情况下,
    # 可以使用 with torch.no_grad():,强制之后的内容不进行计算图构建。
    data = torch.from_numpy(data).cuda()
    x_data = data.float()

    with torch.no_grad():
        # 将输入送入模型中,求y的预测值
        y_pred = model(x_data).cpu()
        
    return y_pred

你可能感兴趣的:(pytorch,神经网络,python)