论文阅读:U-Net: Convolutional Networks for Biomedical
Image Segmentation
传统的网络对数据的要求特别多,但是作者提出了一个全新的网络既所谓的“完全卷积网络”,通过扩展这个体系,使得它可以只使用很少的训练图像,产生更精确的分割。
作者通过数据增强,来使用少量的数据获得很好的训练效果
作者使用了一个更好的损失函数(我现在还没看明白)
from torch import nn
from torch.nn import functional as F
import torch
class Conv_Block(nn.Module):
def __init__(self,in_channel,out_channel):
super(Conv_Block, self).__init__()
self.layer=nn.Sequential(
nn.Conv2d(in_channel,out_channel,3,1,1,padding_mode='reflect',bias=False),
nn.BatchNorm2d(out_channel),
nn.Dropout2d(0.3),
nn.LeakyReLU(),
nn.Conv2d(out_channel, out_channel, 3, 1, 1, padding_mode='reflect', bias=False),
nn.BatchNorm2d(out_channel),
nn.Dropout2d(0.3),
nn.LeakyReLU(),
)
def forward(self,x):
return self.layer(x)
class DownSample(nn.Module): # 下采样
def __init__(self,channel):
super(DownSample, self).__init__()
self.layer = nn.Sequential(
nn.Conv2d(channel,channel,3,2,1,padding_mode='reflect',bias=False),
nn.BatchNorm2d(channel),
nn.LeakyReLU()
)
def forward(self,x):
return self.layer(x)
class UpSample(nn.Module):
def __init__(self,channel):
super(UpSample, self).__init__()
self.layer = nn.Conv2d(channel,channel//2,1,1)
def forward(self,x,feature_map):
up = F.interpolate(x,scale_factor=2,mode='nearest')
out = self.layer(up)
return torch.cat((out,feature_map),dim=1)
class UNet(nn.Module):
def __init__(self):
super(UNet,self).__init__()
self.c1 = Conv_Block(3,64)
self.d1 = DownSample(64)
self.c2 = Conv_Block(64,128)
self.d2 = DownSample(128)
self.c3 = Conv_Block(128,256)
self.d3 = DownSample(256)
self.c4 = Conv_Block(256,512)
self.d4 = DownSample(512)
self.c5 = Conv_Block(512,1024)
self.u1 = UpSample(1024)
self.c6 = Conv_Block(1024,512)
self.u2 = UpSample(512)
self.c7 = Conv_Block(512, 256)
self.u3 = UpSample(256)
self.c8 = Conv_Block(256, 128)
self.u4 = UpSample(128)
self.c9 = Conv_Block(128, 64)
self.out = nn.Conv2d(64,3,3,1,1)
self.Th = nn.Sigmoid()
def forward(self,x):
R1 = self.c1(x)
R2 = self.c2(self.d1(R1))
R3 = self.c3(self.d2(R2))
R4 = self.c4(self.d3(R3))
R5 = self.c5(self.d4(R4))
O1 = self.c6(self.u1(R5,R4))
O2 = self.c7(self.u2(O1, R3))
O3 = self.c8(self.u3(O2, R2))
O4 = self.c9(self.u4(O3, R1))
return self.Th(self.out(O4))
# 测试代码
if __name__ == '__main__':
x = torch.randn(2,3,256,256)
print(x)
net = UNet()
print(net(x))
‘main’:
x = torch.randn(2,3,256,256)
print(x)
net = UNet()
print(net(x))