刘二大人lecture11 code

import torch
import torch.nn as nn
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt

batch_size = 64
correct_list = []
loss_list = []
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST(root="dataset/mnist",
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          shuffle=True,
                          batch_size=batch_size)

test_dataset = datasets.MNIST(root="dataset/mnist",
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


class Inception(nn.Module):
    def __init__(self, in_channels):
        super(Inception, self).__init__()
        self.branch_pool = nn.Conv2d(in_channels=in_channels,
                                     out_channels=24,
                                     kernel_size=1)
        self.branch1x1_1 = nn.Conv2d(in_channels=in_channels,
                                     out_channels=16,
                                     kernel_size=1)
        self.branch1x1_2 = nn.Conv2d(in_channels=in_channels,
                                     out_channels=16,
                                     kernel_size=1)
        self.branch1x1_3 = nn.Conv2d(in_channels=in_channels,
                                     out_channels=16,
                                     kernel_size=1)

        self.branch5x5 = nn.Conv2d(in_channels=16,
                                   out_channels=24,
                                   kernel_size=5,
                                   padding=2)

        self.branch3x3_1 = nn.Conv2d(in_channels=16,
                                     out_channels=24,
                                     kernel_size=3,
                                     padding=1)
        self.branch3x3_2 = nn.Conv2d(in_channels=24,
                                     out_channels=24,
                                     kernel_size=3,
                                     padding=1)

    def forward(self, x):
        branch_pool = F.avg_pool2d(x, kernel_size=3,
                                   padding=1,
                                   stride=1)
        branch_pool = self.branch_pool(branch_pool)

        branch1x1 = self.branch1x1_1(x)

        branch5x5 = self.branch1x1_2(x)
        branch5x5 = self.branch5x5(branch5x5)

        branch3x3 = self.branch1x1_3(x)
        branch3x3 = self.branch3x3_1(branch3x3)
        branch3x3 = self.branch3x3_2(branch3x3)

        outputs = [branch_pool, branch1x1, branch5x5, branch3x3]
        return torch.cat(outputs, dim=1)


class GoogleNet(nn.Module):
    def __init__(self):
        super(GoogleNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
        self.incep1 = Inception(in_channels=10)
        self.incep2 = Inception(in_channels=20)
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = GoogleNet()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f %%' % (epoch + 1, batch_idx + 1, running_loss / 300))
            loss_list.append(running_loss / 300)
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            y_hat = model(images)
            _, predicted = torch.max(y_hat.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %.3f %%' % (100 * correct / total))
    correct_list.append(correct)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

plt.plot(range(len(loss_list)), loss_list)
plt.xlabel("update times")
plt.ylabel("Loss")
plt.show()```

你可能感兴趣的:(python,机器学习,深度学习,python,pytorch)