DataWhale组队学习-Task01:Paddle开发深度学习模型快速入门

Trick

1. Series数据处理-map

不论是利用字典还是函数进行映射,Series.map()方法都是把对应的数据逐个当作参数传入到字典或函数中,得到映射后的值。

#①使用字典进行映射
data["gender"] = data["gender"].map({"男":1, "女":0})
​
#②使用函数
def gender_map(x):
    gender = 1 if x == "男" else 0
    return gender
#注意这里传入的是函数名,不带括号
data["gender"] = data["gender"].map(gender_map)

2. pd.DataFrame.reset_index(drop=False)

重置索引,获得新的index。原来的index变成数据列,保留下来;不想保留原来的index,使用参数 drop=True。

一、定义DataSet

1. 数据原始形式

DataWhale组队学习-Task01:Paddle开发深度学习模型快速入门_第1张图片

2. 数据编码方式

#Dataset构造
class BaseDataset(Dataset):
    def __init__(self,df):
        self.df = df
        self.feature_name = ['user_id','item_id']
        #数据编码
        self.enc_data()

    def enc_data(self):
        #使用enc_dict对数据进行编码
        self.enc_data = defaultdict(dict)
        for col in self.feature_name:
            self.enc_data[col] = paddle.to_tensor(np.array(self.df[col])).squeeze(-1)
            
    def __getitem__(self, index):
        data = dict()
        for col in self.feature_name:
            data[col] = self.enc_data[col][index]
        if 'label' in self.df.columns:
            data['label'] = paddle.to_tensor([self.df['label'].iloc[index]],dtype="float32").squeeze(-1)
        return data

    def __len__(self):
        return len(self.df)

train_dataset = BaseDataset(train_df)
test_dataset = BaseDataset(test_df)

DataWhale组队学习-Task01:Paddle开发深度学习模型快速入门_第2张图片

3. 如何进行数据I/O

二、 定义模型

  1. 定义各个子模块
  2. 将子模块合并成最终的模型

DataWhale组队学习-Task01:Paddle开发深度学习模型快速入门_第3张图片

class NCF(paddle.nn.Layer):
    def __init__(self,
                embedding_dim = 16,
                vocab_map = None,
                loss_fun = 'nn.BCELoss()'):
        super(NCF, self).__init__()
        self.embedding_dim = embedding_dim
        self.vocab_map = vocab_map
        self.loss_fun = eval(loss_fun) # self.loss_fun  = paddle.nn.BCELoss()
        
        self.user_emb_layer = nn.Embedding(self.vocab_map['user_id'],
                                          self.embedding_dim)
        self.item_emb_layer = nn.Embedding(self.vocab_map['item_id'],
                                          self.embedding_dim)
        
        self.mlp = nn.Sequential(
            nn.Linear(2*self.embedding_dim,self.embedding_dim),
            nn.ReLU(),
            nn.BatchNorm1D(self.embedding_dim),
            nn.Linear(self.embedding_dim,1),
            nn.Sigmoid()
        )
        
    def forward(self,data):
        user_emb = self.user_emb_layer(data['user_id']) # [batch,emb]
        item_emb = self.item_emb_layer(data['item_id']) # [batch,emb]
        mlp_input = paddle.concat([user_emb, item_emb],axis=-1).squeeze(1)
        y_pred = self.mlp(mlp_input)
        if 'label' in data.keys():
            loss = self.loss_fun(y_pred.squeeze(),data['label'])
            output_dict = {'pred':y_pred,'loss':loss}
        else:
            output_dict = {'pred':y_pred}
        return output_dict

三、完成Pipeline

  1. 训练模型,验证模型,测试模型
def train_model(model, train_loader, optimizer, metric_list=['roc_auc_score','log_loss']):
    model.train()
    pred_list = []
    label_list = []
    pbar = tqdm(train_loader)
    for data in pbar:

        output = model(data)
        pred = output['pred']
        loss = output['loss']

        loss.backward()
        optimizer.step()
        optimizer.clear_grad()

        pred_list.extend(pred.squeeze(-1).cpu().detach().numpy())
        label_list.extend(data['label'].squeeze(-1).cpu().detach().numpy())
        pbar.set_description("Loss {}".format(loss.numpy()[0]))

    res_dict = dict()
    for metric in metric_list:
        if metric =='log_loss':
            res_dict[metric] = log_loss(label_list,pred_list, eps=1e-7)
        else:
            res_dict[metric] = eval(metric)(label_list,pred_list)

    return res_dict

def valid_model(model, valid_loader, metric_list=['roc_auc_score','log_loss']):
    model.eval()
    pred_list = []
    label_list = []

    for data in (valid_loader):

        output = model(data)
        pred = output['pred']

        pred_list.extend(pred.squeeze(-1).cpu().detach().numpy())
        label_list.extend(data['label'].squeeze(-1).cpu().detach().numpy())

    res_dict = dict()
    for metric in metric_list:
        if metric =='log_loss':
            res_dict[metric] = log_loss(label_list,pred_list, eps=1e-7)
        else:
            res_dict[metric] = eval(metric)(label_list,pred_list)

    return res_dict

def test_model(model, test_loader):
    model.eval()
    pred_list = []

    for data in tqdm(test_loader):

        output = model(data)
        pred = output['pred']
        pred_list.extend(pred.squeeze().cpu().detach().numpy())

    return np.array(pred_list)

 2. 加载数据集

train_loader = DataLoader(train_dataset,batch_size=config['batch'],shuffle=True,num_workers=0)
test_loader = DataLoader(test_dataset,batch_size=config['batch'],shuffle=False,num_workers=0)

 3. 实例化模型,优化器

model = NCF(embedding_dim=64,vocab_map=vocab_map)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=config['lr'])
train_metric_list = []

4. 开始训练

for i in range(config['epoch']):
    #模型训练
    train_metirc = train_model(model,train_loader,optimizer=optimizer)
    train_metric_list.append(train_metirc)

    print("Train Metric:")
    print(train_metirc)

 5. 新数据预测

y_pre = test_model(model,test_loader)
test_df['y_pre'] = y_pre
test_df['ranking'] = test_df.groupby(['user_id'])['y_pre'].rank(method='first', ascending=False)
test_df = test_df.sort_values(by=['user_id','ranking'],ascending=True)
test_df

6. 计算指标

 HITRATE 与 NDCG

def hitrate(test_df,k=20):
    user_num = test_df['user_id'].nunique()
    test_gd_df = test_df[test_df['ranking']<=k].reset_index(drop=True)
    return test_gd_df['label'].sum() / user_num

def ndcg(test_df,k=20):
    '''
    idcg@k 一定为1
    dcg@k 1/log_2(ranking+1) -> log(2)/log(ranking+1)
    '''
    user_num = test_df['user_id'].nunique()
    test_gd_df = test_df[test_df['ranking']<=k].reset_index(drop=True)
    
    test_gd_df = test_gd_df[test_gd_df['label']==1].reset_index(drop=True)
    test_gd_df['ndcg'] = math.log(2) / np.log(test_gd_df['ranking']+1)
    return test_gd_df['ndcg'].sum() / user_num

hitrate(test_df,k=5)
ndcg(test_df,k=5)

你可能感兴趣的:(DataWhale开源学习,学习)