# -*- coding: utf-8 -*-
"""
Created on Fri Oct 28 09:11:05 2022
@author: Lenovo
"""
from sklearn.metrics import make_scorer
import os
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score,mean_squared_error
import shutil
import seaborn as sns
from scipy.stats import gaussian_kde
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.feature_selection import RFECV
from scipy.interpolate import griddata
from itertools import combinations
from operator import itemgetter
# path=r'D:\Fluxnet\try'
# outpath=r'D:\Fluxnet\OUTCOME\每种变量组合放在一起之前的仓库'
site_list=[]
year_list=[]
total_number=[]
post_dropna_number=[]
post_drop_le_abnormal_number=[]
test_number=[]
train_number=[]
N_estimators=[]
Max_depth=[]
Rmse_list=[]
R2_list=[]
Bias_list=[]
Drivers_column=[]
Filling_rate_list=[]
Feature_list=[]
# ==========================加NDVI
# path1=r'D:\Fluxnet\加了土壤水和土壤温度的\MDS_用'
# path2=r'D:\Fluxnet\ndvi777 - SHAOSHAOSHAO' # 认真一点谢谢 别老粗心 改了上边不改下边 丢三落四的
# for s,j in zip(os.listdir(path1),os.listdir(path2)):
# print(os.listdir(path2))
# print(s)
# sole_s=pd.read_csv(os.path.join(path1,s))
# sole_j=pd.read_csv(os.path.join(path2,j))
# sole_s['TIMESTAMP_START']=sole_s['TIMESTAMP_START'].astype('str')
# sole_s['TIMESTAMP_START']=pd.to_datetime(sole_s['TIMESTAMP_START'])
# sole_j=sole_j[['TIMESTAMP_START','NDVI']]
# sole_j['TIMESTAMP_START'] = pd.to_datetime(sole_j['TIMESTAMP_START'])
# sole_j = sole_j.set_index('TIMESTAMP_START')
# sole_j = sole_j.resample('1D').interpolate() # 30T 按分钟(T)插值 1D按天插值
# sole_j = sole_j.reset_inde
# sole=pd.merge(sole_s, sole_j,how='left',on='TIMESTAMP_START')
# sole['NDVI']=sole['NDVI'].interpolate(method='pad') # 1天一个值
# sole.to_csv(os.path.join(path3,s))
# ===========================分地类统计
# path0 = r'C:\Users\Lenovo\Desktop\分地类站点'
# path = r'D:\Fluxnet\加了土壤水和土壤温度的\MDS_用666'
# count = 0
# for folder in os.listdir(path0):
# for i in os.listdir(path):
# if i.split('_')[1] in folder:
# print(i)
# count+=1
# shutil.copy(os.path.join(path,i)
# ,os.path.join(r'C:\Users\Lenovo\Desktop\分地类站点',folder))
# print(count)
# =============================合并为一个csv
# path = r'C:\Users\Lenovo\Desktop\四大类\GRA'
# path_fix = r'C:\Users\Lenovo\Desktop\四大类'
# crop = pd.DataFrame()
# for i in os.listdir(path):
# sole = pd.read_csv(os.path.join(path,i))
# crop = pd.concat([crop,sole])
# crop.to_csv(os.path.join(path_fix,'gra.csv'),index = False,encoding='utf-8-sig')
# path = r'C:\Users\Lenovo\Desktop\四大类\CSH_OSH_SAV_WAS_WET'
# path_fix = r'C:\Users\Lenovo\Desktop\四大类'
# crop = pd.DataFrame()
# for i in os.listdir(path):
# sole = pd.read_csv(os.path.join(path,i))
# crop = pd.concat([crop,sole])
# crop.to_csv(os.path.join(path_fix,'CSH_OSH_SAV_WAS_WET.csv'),index = False,encoding='utf-8-sig')
# path = r'C:\Users\Lenovo\Desktop\四大类\DBF_DNF_EBF_ENF_MF'
# path_fix = r'C:\Users\Lenovo\Desktop\四大类'
# crop = pd.DataFrame()
# for i in os.listdir(path):
# sole = pd.read_csv(os.path.join(path,i))
# crop = pd.concat([crop,sole])
# crop.to_csv(os.path.join(path_fix,'DBF_DNF_EBF_ENF_MF.csv'),index = False,encoding='utf-8-sig')
# =======================按照0.85/0.15划分train_test 留出MDS 画出九个核密度 插补率 泰勒图
hou=37
count=0
path_concat = r'C:\Users\Lenovo\Desktop\四大类\REALTRY'
for dalei,count666,doubley in zip(os.listdir(path_concat),[1,2,3,4],[37,38,39,40]):
sole = pd.read_csv(os.path.join(path_concat,dalei))
site_list1=[]
year_list1=[]
test_number1=[]
train_number1=[]
rmse_list1=[]
r2_list1=[]
bias_list1=[]
sole_raw = sole
sole_copy = sole
# sole_raw = sole_raw.dropna(axis=0
print('原始数据:',sole.shape)
sole.dropna(subset=['LE_F_MDS_QC'],axis=0,inplace=True) #删除LE_F_MDS_QC中含有空值的行
print('去掉没QC后的原始数据:',sole.shape)
trainset=sole[sole['LE_F_MDS_QC']==0]
print('观测数据量:',trainset.shape)
#=================================以LE_F_MDS=20W/m² 为界 白天和晚上分别训练
# trainset=trainset[trainset['LE_F_MDS']>=20])
gap=sole[sole['LE_F_MDS_QC']!=0]
print('需要插补的数据量:',gap.shape)
gap_drople=gap.drop(['LE_F_MDS','LE_F_MDS_QC'
,'TIMESTAMP_START','TIMESTAMP_END']
# , 'SW_IN_F_MDS_QC', 'NETRAD'
,axis=1)
# gap_drople=gap_drop.drop(['SW_IN_F_MDS_QC', 'NETRAD'],axis=1)
#===============================每行至少有一个/三个不是空值时保留
# gap_dropna=gap_drople[gap_drople.isnull().T.sum()<=8]
gap_dropna=gap_drople.dropna(axis=0,thresh=3)
print('去空值后的插补数据:',gap_dropna.shape)
dff=pd.DataFrame(gap_dropna.isna().sum().sort_values(ascending=False))
print('测试集:',dff)
#看下训练集的空值,可以看出跟插补集不太一样
print('训练集:',trainset.drop(['LE_F_MDS','LE_F_MDS_QC'
,'TIMESTAMP_START','TIMESTAMP_END']
,axis=1).isna().sum().sort_values(ascending=False))
#==========================获得所有变量组合
def combine(list0,o):
list1=[]
for i in combinations(list0,o):
list1.append(i)
return list1
#==========================遍历
rmse_list=[]
r2_list=[]
bias_list=[]
filling_rate_list=[]
count =count666
fig = plt.figure(figsize=(16,40),dpi=600)
for u in reversed(range(4,13)):
fillrate_mid_list=[]
col_list=[]
list666=[]
list666.extend(combine(dff.index,u))
#===========================获取不同插补率的组合特征
list_score=[]
score=[]
big_list=[]
for i in range(0,len(list666)):
sco=f'{gap_drople[list(list666[i])].dropna().shape[0] / gap_drople.shape[0]:.2f}'
score+=[f'{gap_drople[list(list666[i])].dropna().shape[0] / gap_drople.shape[0]:.2f}']
list_score+=[{'score':sco,'list':list666[i]}]
# print(list_score) # print(list_score)
#=============================plot
key_list=[a['list'] for a in list_score]
len_list = [ len(i) for i in key_list ]
score=[np.float64(i) for i in score]
# plt.rc('font', family='Times New Roman',size=20)
# plt.scatter(len_list,score)
# plt.xlabel('Number of drivers', {'family':'Times New Roman','weight':'normal','size':20})
# plt.ylabel('Filling rate',{'family':'Times New Roman','weight':'normal','size':20})
#============================填充率最大对应去的变量列表
sorted_list=sorted(list_score, key=lambda list_score: list_score['score'], reverse=True)
print('********************')
# print(sorted_list) # 按降序排列
biggest_score=[a['score'] for a in sorted_list][0]
# print(biggest_score)
biggest_score_feature_list=[a['list'] for a in sorted_list][0]
# print(biggest_score_feature_list)
Feature_list.append(biggest_score_feature_list)
filling_rate_list.append(biggest_score)
Filling_rate_list.append(biggest_score)
# print(Feature_list,Filling_rate_list)
#==============================建模准备================================
train_copy=trainset.copy()
print('===========')
# print(train_copy)
train_copy.drop(['LE_F_MDS_QC','TIMESTAMP_START','TIMESTAMP_END']
,axis=1,inplace=True)#.isna().sum().sort_values(ascending=False)
# print(train_copy) #单纯看下
feature=[x for x in biggest_score_feature_list]
# print(feature)
train_option=train_copy[feature]
train_option['LE_F_MDS']=train_copy['LE_F_MDS']
print(train_option.shape)#原始数值
print(train_option.isna().sum().sort_values(ascending=True))
#============================去除空值=======================================
train_option_dropna=train_option.dropna() #训练数据去空值
print('训练集去掉空值后: ',train_option_dropna.shape)
#===========================去除LE异常值====================================
# des=train_option_dropna.describe()
# print(des)
# shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
# xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
# print(shangxu)
# print(xiaxu)
# c=train_option_dropna[(train_option_dropna['LE_F_MDS'] <=shangxu[-1])
# &(train_option_dropna['LE_F_MDS'] >=xiaxu[-1])]
c=train_option_dropna
print(c.shape)
Drivers=c.drop(['LE_F_MDS'],axis=1)
Drivers_column+=[' '.join(Drivers.columns.tolist())]
LE=c['LE_F_MDS']
x_train,x_test,y_train,y_test=train_test_split(Drivers,LE
,test_size=0.20
,random_state=(0))
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
#========================网格搜索+OOB 寻找最有超参数========================
# # def simpleGridSearch(x_train, x_test, y_train, y_test):
# # 使用for循环实现网格搜索
# # grid search start
# best_score = 100
# rmse = []
# for n_esti in [300,800,1100,1500]:
# for max_dep in [30,90,110]:
# rf = RandomForestRegressor(n_estimators=n_esti
# ,max_depth=max_dep
# ,oob_score=True
# ,random_state=(0)) # 对于每种参数可能的组合,进行一次训练;
# rf.fit(x_train,y_train)
# score = np.sqrt(mean_squared_error(y_train, rf.oob_prediction_))
# print(score)
# rmse+=[score]
# if score < best_score:#找到表现最好的参数
# n_estimators = n_esti
# max_depth = max_dep
# best_score = score
# print("Best score:{:.2f}".format(best_score))
# return n_estimators,max_depth
#========================GridsearchCV 寻找最优超参数=========================
# rfr=RandomForestRegressor()
# param_grid={'n_estimators':[300,800,1100]#300,500,700,900,1100,1300,1500,1700,1900,2100
# #500,800,1100,1400,1700,2000 1,2,3,4,5,6
# ,'max_depth':[30,80,110]}#30,50,70,90,110,150 30,50,70,90,110
# gs=GridSearchCV(rfr
# ,param_grid=param_grid
# ,scoring=make_scorer(mean_squared_error,greater_is_better=False)
# ,score=['r2','neg_root_mean_squared_error'] # sklearn.metrics.SCORES.keys()
#,refit='neg_root_mean_squared_error'
# ,cv=2
# ,verbose=1
# ,n_jobs=-1)
# gs.fit(x_train,y_train)
# max_depth=gs.best_params_['max_depth']
# Max_depth+=[max_depth]
# print(gs.best_params_)
# n_estimators=gs.best_params_['n_estimators']
# N_estimators+=[n_estimators]
# print(np.sqrt(-1*gs.score(x_test,y_test)))
# #设置字体格式
# sns.set(style='ticks')
# plt.rc('font', family='Times New Roman',size=20)
# # plt.rcParams["font.weight"] = "bold"
# # plt.rcParams["axes.labelweight"] = "bold"
# #=============================Heat map of RMSE=============================
# gs_df=pd.DataFrame(gs.cv_results_)
# gs_df['RMSE']=np.sqrt(-1*(gs_df['mean_test_score']))
# gs_df[['MAX_DEPTH','N_ESTIMATORS']]=gs_df[['param_max_depth','param_n_estimators']]
# heatmap_data=gs_df.pivot_table(index='MAX_DEPTH'
# ,columns='N_ESTIMATORS'
# ,values='RMSE')
# plt.figure(figsize=(10, 10),dpi=500)
# heat_map=sns.heatmap(data=heatmap_data
# ,linewidths=.05 #单个格子边框宽度 linecolor格子边框颜色
# ,fmt='.2f'
# ,cmap='jet'#'PuBuGn_r'
# ,cbar=True
# ,cbar_kws={'label':'RMSE of Cross-validation (W/m²)'
# ,'orientation':'vertical'#默认竖直,水平为horizontal
# ,'format':'%.2f'
# ,'extend':'both'
# }#'pad':colorbar与heatmap间的距离
# )# cmap = 'PuBuGn' 'cubehelix_r' 'PuBuGn_r' 'YlGnBu_r'
# # mask=heatmap_data>10 数据掩膜
# # ,annot=True #默认FALSE不显示单个格子数值
# # ,annot_kws={'size':15,'weight':'normal','color':'black'}#单个格子字体设置
# # heat_map.figure.colorbar(heat_map.collections[0],extend='both').set_label('RMSE of Cross-validation (W/m²)',fontdict={'size':16})
# # 'interpolation':'nearest'
# plt.gca ().invert_yaxis ()
# plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\HeatMap1',s.split('_',6)[1])
# , bbox_inches='tight', dpi=500)
# plt.show()
# # plt.clf ()
# # plt.close ()
#==========================Interpolation map of RMSE=======================
# y,x=np.mgrid[1500:300:4j,30:110:3j]#300:2100:10j,30:150:7j #1:10:10j,1:10:10j 500:2000:6j,30:110:5j
# points=np.hstack((x.flatten()[:,None],y.flatten()[:,None]))
# y1,x1=np.mgrid[300:1500:500j,30:110:500j]#300:2100:1000j,30:150:1000j 1:10:1000j,1:10:1000j
# z1=griddata(points
# ,np.array(rmse)
# ,(x1,y1)
# ,method='cubic')
# plt.figure(figsize=(10,8),dpi=400)
# plt.imshow(z1
# ,extent=[np.min(x),np.max(x),np.min(y),np.max(y)]
# ,cmap='jet'
# ,aspect='auto')
# print(points)
# plt.colorbar(extend='both', label='RMSE of OOB (W/m²)')
# plt.xlabel('MAX_DEPTH')
# plt.ylabel('N_ESTIMATORS')
# # a=[i for i in range(3,12)]
# plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\InterpolationMap1',s.split('_',6)[1])
# , bbox_inches='tight', dpi=500)
# plt.show()
# # plt.clf ()
# # plt.close ()
#==================================建模====================================
rf=RandomForestRegressor(n_estimators=1100
,max_depth=80
,oob_score=True
,random_state=(0))
rf.fit(x_train,y_train)
# rf.fit(Drivers,LE)
# pred_oob = rf.oob_prediction_ #袋外预测值
# print(len(pred_oob))
# print(pred_oob)
# rmse=np.sqrt(mean_squared_error(LE, pred_oob)) #袋外均方根误差
# rmse_list.append(rmse)
# Rmse_list.append(rmse)
# rmse_df=pd.DataFrame({'rmse':rmse_list})
# print(rmse_df)
# print(rmse_list)
rmse=np.sqrt(mean_squared_error(y_test,rf.predict(x_test)))
rmse_list.append(rmse)
Rmse_list.append(rmse)
rmse_df=pd.DataFrame({'rmse':rmse_list})
print(rmse_df)
print(rmse_list)
# r2=rf.oob_score_
r2=r2_score(y_test,rf.predict(x_test))
r2_list.append(r2)
R2_list.append(r2)
r2_df=pd.DataFrame({'r2':r2_list})
# bias=(pred_oob-LE).mean()
bias=(rf.predict(x_test)-y_test).mean()
bias_list.append(bias)
Bias_list.append(bias)
bias_df=pd.DataFrame({'bias':bias_list})
#==============================复制一下整个的 插补 保存 比较 导出
gap_dropna_copy=gap_dropna.copy()
gap_dropna_copy=gap_dropna_copy[feature]
gap_dropna_copy=gap_dropna_copy.dropna()
gap_dropna_copy.loc[:, 'LE_gap_filled'] = rf.predict(gap_dropna_copy)
le=sole.copy()
le['LE_F_MDS_QC'].replace([1,2,3], np.nan, inplace=True)
le['LE_F_MDS_QC'].replace(0, -9999, inplace=True)
le['LE_F_MDS_QC'].fillna(gap_dropna_copy['LE_gap_filled'], inplace=True)
le['RMSE']=[rmse]*sole.shape[0]
dic={'TIMESTAMP_START':le['TIMESTAMP_START'].tolist()
,'TIMESTAMP_END':le['TIMESTAMP_END'].tolist()
,'LE_Gap_filled': le['LE_F_MDS_QC'].tolist()
,'RMSE': le['RMSE']
,'Drivers': [' '.join(Drivers.columns.tolist())]*sole.shape[0]
}
print(le['TIMESTAMP_START'])
print(le['TIMESTAMP_END'])
dic_df = pd.DataFrame(dic)
# pd.set_option('display.max_rows',None)
# print(big_list)
# dic_df.to_csv(os.path.join(outpath, str(dalei.split('_',6)[1]) +'.csv'),index = False)
#==============================高斯核密度散点图==============================
# post_gs=pd.DataFrame({'predict':pred_oob,'in_situ':LE,})
post_gs=pd.DataFrame({'predict':rf.predict(x_test),'in_situ':y_test,})
post_gs['index']=[i for i in range(post_gs.shape[0])]
post_gs=post_gs.set_index('index')
# print('实际的: ',pd.DataFrame(y_test))
# print('预测的: ',pd.DataFrame(rf.predict(x_test)))
# plt.scatter(post_gs['in_situ'],post_gs['predict'])
# sns.jointplot(post_gs,x=post_gs['in_situ'],y=post_gs['predict'],kind='reg');
x=post_gs['in_situ']
y=post_gs['predict']
xy = np.vstack([x,y])#计算点密度
z = gaussian_kde(xy)(xy)#高斯核密度
#根据密度对点进行排序,最密集的点在最后绘制
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
fw = 800
ax = fig.add_subplot(10,4,count)
count += 4
scatter = ax.scatter(x,y,marker='o',c=z,s=15,label='LST',cmap='PuBuGn_r') # o是实心圆,c=是设置点的颜色,cmap设置色彩范围,'Spectral_r'和'Spectral'色彩映射相反
divider = make_axes_locatable(ax) #画色域图
plt.scatter(x, y, c=z, s=7, cmap='jet')
plt.axis([0, fw, 0, fw]) # 设置线的范围
plt.title(10, 700, dalei, family = 'Times New Roman',size=21)
plt.text(len(feature), family = 'Times New Roman',size=21)
# plt.text(10, 600, 'Drivers = %s' % len(feature), family = 'Times New Roman',size=21)
# plt.text(10, fw-18, 'Size = %.f' % len(y), family = 'Times New Roman',size=15) # text的位置需要根据x,y的大小范围进行调整。
# plt.text(10, fw-26, 'RMSE = %.3f W/m²' % rmse, family = 'Times New Roman',size=15)
# plt.text(10, fw-34, 'R² = %.3f' % r2, family = 'Times New Roman',size=15)
# plt.text(10, fw-42, 'BIAS = %.3f W/m²' % bias, family = 'Times New Roman',size=15)
ax.set_xlabel('Station LE (W/m²)',family = 'Times New Roman',size=21)
ax.set_ylabel('Estimated LE (W/m²)',family = 'Times New Roman',size=21)
plt.plot([0,fw], [0,fw], 'gray', lw=2) # 画的1:1线,线的颜色为black,线宽为0.8
plt.xlim([0,fw])
plt.ylim([0,fw])
plt.xticks(fontproperties='Times New Roman',size=20)
plt.yticks(fontproperties='Times New Roman',size=20)
plt.tight_layout()
# site_list+=[dalei.split('_',6)[1]]
# year_list+=[int(dalei.split('_',6)[5].split('-',1)[1])
# -int(dalei.split('_',6)[5].split('-',1)[0])+1]
# total_number.append(int(sole.shape[0]))
# post_dropna_number.append(int(train_option_dropna.shape[0]))
# post_drop_le_abnormal_number.append(int(c.shape[0]))
# test_number.append(int(c.shape[0]*0.25))
# train_number.append(int(c.shape[0]*0.75))
# N_estimators.append(n_estimators)
# Max_depth.append(max_depth)
#===============================================导出
# dic={'SITES':site_list,'YEAR':year_list,'原始数目':total_number
# ,'去掉空值后':post_dropna_number
# ,'去掉LE异常值后':post_drop_le_abnormal_number
# ,'TRAIN_NUMBER':train_number
# ,'TEST_NUMBER':test_number
# # ,'n_estimators':N_estimators,'max_depth':Max_depth
# ,'RMSE':Rmse_list,'R2':R2_list,'BIAS':Bias_list
# ,'Drivers_column':Drivers_column
# ,'Filling_rate' : Filling_rate_list
# }
# dic=pd.DataFrame(dic)
# # print(dic)
# dic.to_csv(r'D:\Fluxnet\OUTCOME\RMSE_ALL\RMSE_All_Day.csv')
# dic_sole={
# 'RMSE':rmse_list,'R2':r2_list,'BIAS':bias_list
# }
# dic_sole=pd.DataFrame(dic_sole)
# dic_sole.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\RMSE', str(dalei.split('_',6)[1]) +'.csv'),index = False)
#============================================================MDS_GAP
# print('用来MDS原始数据集去掉空值后的值: ',sole_raw.shape)
# # all_year = int((dalei.split('_')[5]).split('-')[1])-int((dalei.split('_')[5]).split('-')[0])+1
# MDS_GAP=sole_raw
# MDS_GAP['Year']=MDS_GAP['TIMESTAMP_END']
# MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
# MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
# MDS_GAP['Year'] = MDS_GAP['TIMESTAMP_END'].dt.year #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
# MDS_GAP['DoY']=MDS_GAP['TIMESTAMP_END']
# MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
# MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
# doy=[]
# for i in MDS_GAP['TIMESTAMP_END']:
# doy += [i.strftime("%j")]
# MDS_GAP['DoY'] = doy #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
# MDS_GAP['Hour'] = MDS_GAP['TIMESTAMP_END']
# MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
# MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
# hour=[]
# for i in MDS_GAP['TIMESTAMP_END']:
# hour += [int(i.strftime('%H'))+float(i.strftime('%M'))/60]
# MDS_GAP['Hour'] = hour
# # MDS_GAP['Hour'] = [MDS_GAP['TIMESTAMP_END'].dt.hour+MDS_GAP['TIMESTAMP_END'].dt.minute/60]
# #老报错 Time stamp i
# # doy_first=[1]*47
# # doy_then = []
# # for day in range(2,366):
# # doy_then+=[day]*48
# # doy_last = [366]
# # doy = (doy_first + doy_then + doy_last) * 1 #第一年的hour 是从0.5开始的,故47天 分开算
# # print(len(doy))
# # MDS_GAP=sole_raw
# # MDS_GAP=MDS_GAP[:len(17520*all_year)]
# # MDS_GAP['DoY']=doy * all_year
# # first_year = int((s.split('_')[5]).split('-')[0])
# # last_year = int((s.split('_')[5]).split('-')[1])
# # year=[]
# # for i in range(first_year , first_year+1):
# # year +=[i] *17520
# # MDS_GAP['Year'] = year
# # hour_first=[]
# # hour_first+=[0.5*i for i in range(1,48)]
# # hour_then=[]
# # hour_then+=[0.5*i for i in range(48)]
# # hour_then = hour_then*364
# # hour_last = [0.0]
# # hour=hour_first + hour_then + hour_last
# # hour=hour * 1
# # MDS_GAP['Hour']=hour * all_year
# MDS_GAP.loc[:,'LE']=y_test
# MDS_GAP['LE'].to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来rmse的原始值666', str(dalei.split('_',6)[1]) + '.txt'),sep=' ',index = False)
# print('=======================',MDS_GAP['LE'])
# MDS_GAP['LE_F_MDS']=sole_raw['LE_F_MDS']
# # print('=======================',MDS_GAP['LE_F_MDS'])
# MDS_GAP.loc[MDS_GAP['LE']>=-9999,['LE']] = -9999
# print('=======================',MDS_GAP['LE'])
# MDS_GAP['LE'].fillna(MDS_GAP['LE_F_MDS'],inplace=True)
# # print('=======================',MDS_GAP['LE'])
# # MDS_GAP['rH']=MDS_GAP['RH']
# # MDS_GAP['Tsoil']=MDS_GAP['TS_F_MDS_1']
# MDS_GAP['Rg']=MDS_GAP['SW_IN_F_MDS']
# MDS_GAP['Tair']=MDS_GAP['TA_F_MDS']
# MDS_GAP['VPD']=MDS_GAP['VPD_F_MDS']
# MDS_GAP['NEE']=MDS_GAP['NEE_VUT_REF']
# MDS_GAP=MDS_GAP[['Year','DoY','Hour','NEE','LE','Rg','Tair','VPD']]#,'Tsoil','rH',
# # Drivers control Rg <= 1200W/m² Ta <= 2.5℃W/m² VPD <= 50hPa
# MDS_GAP.loc[MDS_GAP['Rg'] > 1200 , ['Rg']] = -9999
# # MDS_GAP.loc[MDS_GAP['Tair'] > 2.5 , ['Tair']] ==-9999
# MDS_GAP.loc[MDS_GAP['VPD'] > 50 , ['VPD']] = -9999
# #将单位插到第零行的位置上r
# row = 0 # 插入的位置
# value = pd.DataFrame([['-', '-', '-', 'umolm-2s-1','Wm-2', 'Wm-2', 'degC','hPa']],columns=MDS_GAP.columns) # 插入的数据 'degC','%',
# df_tmp1 = MDS_GAP[:row]
# df_tmp2 = MDS_GAP[row:]
# # 插入合并数据表
# MDS_GAP = df_tmp1.append(value).append(df_tmp2)
# MDS_GAP = MDS_GAP.fillna(-9999)
# print(MDS_GAP.head())
# # MDS_GAP.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\MDS_TRY666', str(dalei.split('_',6)[1]) + '.txt'),sep=' ',index = False)
# # else:
# # pass
# # doy_first=[1]*47
# # doy_then = []
# # for day in range(2,366):
# # doy_then+=[day]*48
# # doy_last = [366]
# # doy = (doy_first + doy_then + doy_last) * all_year #第一年的hour 是从0.5开始的,故47天 分开算
# # print(len(doy))
# # MDS_GAP=sole_raw
# # MDS_GAP=MDS_GAP[:len(doy)]
# # MDS_GAP['DoY']=doy
# # # MDS_GAP['Year']=MDS_GAP['TIMESTAMP_START']
# # # MDS_GAP['TIMESTAMP_START']=MDS_GAP['TIMESTAMP_START'].astype('str')
# # # MDS_GAP['TIMESTAMP_START']=pd.to_datetime(MDS_GAP['TIMESTAMP_START'])
# # # MDS_GAP['Year'] = MDS_GAP['TIMESTAMP_START'].dt.year #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
# # # MDS_GAP['Year'] = MDS_GAP['Year']
# # first_year = int((s.split('_')[5]).split('-')[0])
# # last_year = int((s.split('_')[5]).split('-')[1])
# # year=[]
# # for i in range(first_year , last_year + 1):
# # year +=[i] *17520
# # MDS_GAP['Year'] = year
# # hour_first=[]
# # hour_first+=[0.5*i for i in range(1,48)]
# # hour_then=[]
# # hour_then+=[0.5*i for i in range(48)]
# # hour_then = hour_then*364
# # hour_last = [0.0]
# # hour=hour_first + hour_then + hour_last
# # hour=hour * all_year
# # MDS_GAP['Hour']=hour
# # MDS_GAP.loc[:,'LE']=y_test
# # MDS_GAP['LE'].to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来rmse的原始值666', str(s.split('_',6)[1]) + '.txt'),sep=' ',index = False)
# # print('=======================',MDS_GAP['LE'])
# # MDS_GAP['LE_F_MDS']=sole_raw['LE_F_MDS']
# # # print('=======================',MDS_GAP['LE_F_MDS'])
# # MDS_GAP.loc[MDS_GAP['LE']>=-9999,['LE']] = -9999
# # print('=======================',MDS_GAP['LE'])
# # MDS_GAP['LE'].fillna(MDS_GAP['LE_F_MDS'],inplace=True)
# # # print('=======================',MDS_GAP['LE'])
# # # MDS_GAP['rH']=MDS_GAP['RH']
# # # MDS_GAP['Tsoil']=MDS_GAP['TS_F_MDS_1']
# # MDS_GAP['Rg']=MDS_GAP['SW_IN_F_MDS']
# # MDS_GAP['Tair']=MDS_GAP['TA_F_MDS']
# # MDS_GAP['VPD']=MDS_GAP['VPD_F_MDS']
# # MDS_GAP['NEE']=MDS_GAP['NEE_VUT_REF']
# # MDS_GAP=MDS_GAP[['Year','DoY','Hour','NEE','LE','Rg','Tair','VPD']]#,'Tsoil','rH',
# # # Drivers control Rg <= 1200W/m² Ta <= 2.5℃W/m² VPD <= 50hPa
# # MDS_GAP.loc[MDS_GAP['Rg'] > 1200 , ['Rg']] = -9999
# # # MDS_GAP.loc[MDS_GAP['Tair'] > 2.5 , ['Tair']] ==-9999
# # MDS_GAP.loc[MDS_GAP['VPD'] > 50 , ['VPD']] = -9999
# # #将单位插到第零行的位置上r
# # row = 0 # 插入的位置
# # value = pd.DataFrame([['-', '-', '-', 'umolm-2s-1','Wm-2', 'Wm-2', 'degC','hPa']],columns=MDS_GAP.columns) # 插入的数据 'degC','%',
# # df_tmp1 = MDS_GAP[:row]
# # df_tmp2 = MDS_GAP[row:]
# # # 插入合并数据表
# # MDS_GAP = df_tmp1.append(value).append(df_tmp2)
# # MDS_GAP = MDS_GAP.fillna(-9999)
# # print(MDS_GAP.head())
# # MDS_GAP.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\MDS_TRY666', str(s.split('_',6)[1]) + '.txt'),sep=' ',index = False)
# #===============================================Various length of gap
# # for j,k in zip([0.05,0.075,0.125],[6,24,48]): #一天 七天 一月 一共占总数据的0.25
# # #48,336,720
# # df0=sole.copy()
# # print(len(df0))
# # df=df0[df0['LE_F_MDS_QC']==0]
# # print(df['LE_F_MDS_QC'])
# # print(len(df))
# # print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
# # #可以开始make gap的位置区间
# # start_point=np.arange(df['LE_F_MDS_QC'].index[0],df['LE_F_MDS_QC'].index[-1]-k+1) #k是gap长度
# # #gap的个数
# # gap_number=int(len(df)*j/k)
# # print(gap_number)
# # # 随机选择开始的位置
# # # np.random.seed(1) # 每次的随机数都是一样的
# # gap_posi=np.random.choice(start_point,gap_number*3) #多一点选择的余地
# # posi=sorted(gap_posi) # 排一下顺序}
# # print(posi)
# # count=0
# # gap_qujian=[]
# # # 并不是每个随机开始的位置都可以用,不能和以前的gap开始的位置重叠,gap的位置数据量也要充足
# # for m,n in enumerate(posi): # m是索引 n是开始的位置(其实也是索引)
# # # 单个gap的区间
# # # 意思是从第多少位到多少位是gap区间
# # gap_danqujian_list =[h for h in np.arange(n,n+k)]
# # print(gap_danqujian_list)
# # print('==')
# # # 整个DataFrame中的gap
# # gap_df = df0.iloc[gap_danqujian_list]
# # # print(gap_df)
# # # gap区间要在限定的范围内
# # if np.isin(gap_danqujian_list,start_point).all():
# # # 不同长度gap不能重叠
# # if m>0 and n-posi[m-1] <= k:
# # continue
# # # gap区间内要有足够的原始数据
# # if len(gap_df.dropna()) / len(gap_df) < 0.5:
# # continue
# # gap_qujian.extend(gap_danqujian_list)
# # print(gap_qujian)
# # count += 1
# # if count == gap_number: # 每种gap的数目都要达到gap_number,达到规定的比例才会停止
# # print('@@@@@@@@@@@@@@@@@@@@@')
# # print(count)
# # break
# # # 要去掉索引对应的le为空的suoyin
# # test_df=df0.iloc[gap_qujian] # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
# # print(test_df)
# # print(len(test_df))
# # test=test_df.loc[test_df['LE_F_MDS_QC']==0,].dropna(axis=0) # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
# # print(test)
# # print(len(test))
# # train_index=np.setdiff1d(df0.index,test_df.index) # setdiff1d 前面那个数组有 后边那个没有的值
# # print(train_index)
# # train_df=df0.iloc[train_index] # # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
# # train=train_df.loc[train_df['LE_F_MDS_QC']==0,].dropna(axis=0)
# # print(train)
# # print(len(train))
# # pd.set_option('display.max_columns', None)
# # # print(test.head(5))
# # print(train.shape)
# # print(test.shape)
# # a=pd.DataFrame(test.isna().sum().sort_values(ascending=False))
# # # des=test.describe()
# # # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
# # # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
# # # test=test[(test['LE_F_MDS'] <=shangxu[3])
# # # &(test['LE_F_MDS'] >=xiaxu[3])]
# # # print(des)
# # # des=train.describe()
# # # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
# # # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
# # # train=train[(train['LE_F_MDS'] <=shangxu[3])
# # # &(train['LE_F_MDS'] >=xiaxu[3])]
# # # print(xiaxu)
# # train=train.drop(['TIMESTAMP_START','TIMESTAMP_END','LE_F_MDS_QC'],axis=1)
# # test=test.drop(['TIMESTAMP_START','TIMESTAMP_END','LE_F_MDS_QC'],axis=1)
# # # train_Drivers=train.drop(['LE_F_MDS'],axis=1)
# # train_Drivers=train[feature]
# # print(train_Drivers.index)
# # # test_Drivers=test.drop(['LE_F_MDS'],axis=1)
# # test_Drivers=test[feature]
# # print(test_Drivers.index)
# # train_LE=train['LE_F_MDS']
# # print(train_LE.index)
# # test_LE=test['LE_F_MDS']
# # print(test_LE.index)
# # # x_train,x_test,y_train,y_test=train_test_split(Drivers,LE
# # # ,test_size=0.25
# # # ,random_state=(0))
# # print(train_Drivers.shape)
# # print(test_Drivers.shape)
# # print(train_LE.shape)
# # print(test_LE.shape)
# # # ==============================建模====================================
# # rf1=RandomForestRegressor(n_estimators=1100
# # ,max_depth=80
# # ,random_state=(0))
# # rf1.fit(train_Drivers,train_LE)
# # rmse1=np.sqrt(mean_squared_error(test_LE,rf1.predict(test_Drivers)))
# # rmse_list1.append(rmse1)
# # rmse_df=pd.DataFrame({'rmse':rmse_list1})
# # print(rmse_df)
# # r2=r2_score(test_LE,rf1.predict(test_Drivers))
# # r2_list1.append(r2)
# # r2_df=pd.DataFrame({'r2':r2_list1})
# # bias=(rf1.predict(test_Drivers)-test_LE).mean()
# # bias_list1.append(bias)
# # bias_df=pd.DataFrame({'bias':bias_list1})
# # site_list1+=[s.split('_',6)[1]]
# # year_list1+=[int(s.split('_',6)[5].split('-',1)[1])
# # -int(s.split('_',6)[5].split('-',1)[0])+1]
# # # total_number.append(int(b.shape[0]))
# # # post_dropna_number.append(int(a.shape[0]))
# # # post_drop_le_abnormal_number.append(int(c.shape[0]))
# # test_number1.append(int(test.shape[0]))
# # train_number1.append(int(train.shape[0]))
# # dic2={'SITES':site_list1,'YEAR':year_list1
# # # ,'原始数目':total_number
# # # ,'去掉空值后':post_dropna_number
# # # ,'去掉LE异常值后':post_drop_le_abnormal_number
# # ,'TRAIN_NUMBER':train_number1
# # ,'TEST_NUMBER':test_number1
# # # ,'n_estimators':N_estimators,'max_depth':Max_depth
# # ,'RMSE':rmse_list1,'R2':r2_list1,'BIAS':bias_list1
# # }
# # dic2=pd.DataFrame(dic2)
# # print(dic2)
# # dic2.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\GAP_diff', str(s.split('_',6)[1]) + '.csv'),index = False)
# # plt.tight_layout()
#===================================RMSE&FILLING RATE 双轴图
#=============================== 变量个数 VS.插补率
# fig = plt.subplot(8,5,36+dalei)
# plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\DoubleY',s.split('_',6)[1])
# , bbox_inches='tight', dpi=500)
x = [12,11,10,9,8,7,6,5,4] #reversed(range(len(df.index)+1))matplotlib does not support generators as input
y1 = rmse_list
y2 = filling_rate_list
# fig = plt.figure(figsize=(12,8),dpi=400)
ax = fig.add_subplot(10,4,doubley)
line1=ax.plot(x, y1,color='red',linestyle='--',marker='o',linewidth=2.5)
ax.set_ylabel('RMSE of 25% tesing set', {'family':'Times New Roman','weight':'normal','size':21},color='red')
ax.set_xlabel('Number of drivers',{'family':'Times New Roman','weight':'normal','size':21})
ax.tick_params(labelsize=20)
# ax1.set_title("")
ax2 = ax.twinx() # this is a important function
#ax2.set_ylim([-0.05,1.05]) # 设置y轴取值范围
# ax2.set_yticks([0.0,0.3,0.5,0.7,0.9]) # 设置刻度范围
# ax2.set_yticklabels([0.0,0.3,0.5,0.7,0.9]) # 设置刻度
line2=ax2.plot(x, y2,color='blue',marker='o',linewidth=2.5)
ax2.tick_params(labelsize=20)
ax2.set_ylabel('Filling rate', {'family':'Times New Roman','weight':'normal','size':21},color='blue')
# ax2.invert_yaxis() #invert_yaxis()翻转纵轴,invert_xaxis()翻转横轴
plt.tick_params(labelsize=20)
plt.xticks(np.arange(3, 13, 1),fontproperties='Times New Roman',size=20)
# line=line1+line2
# ax1.legend(line, [i.get_label() for i in line] ,loc='upper left')
# for x,y in zip(x,y1):
# ax1.text(x,y,'%.0f' % y,fontdict={'fontsize:15'},color='red')
# for x,y in zip(x,y2):
# ax2.text(x,y,'%.2f' % y,fontdict={'fontsize:15'},color='blue')
# plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\8280',dalei.split('_',6)[1])
# , bbox_inches='tight', dpi=500)
# plt.show()
plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\828','dalei')
, bbox_inches='tight', dpi=500)
plt.show()
#========================================读一下八个csv
# dic_list=[]
# for i in range(3,13):
# df=pd.read_csv(os.path.join(outpath,str(s.split('_',6)[1]) + str(i) + '.csv'))
# dic={'list_name':df, 'rmse':df['RMSE'][0]}
# dic_list+=[dic]
# # print(dic_list)
# print('=============================================')
# # df3=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '3' +'.csv'))
# # df4=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '4' +'.csv'))
# # df5=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '5' +'.csv'))
# # df6=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '6' +'.csv'))
# # df7=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '7' +'.csv'))
# # df8=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '8' +'.csv'))
# # df9=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '9' +'.csv'))
# # df10=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '10' +'.csv'))
# # df11=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '11' +'.csv'))
# # dic=[{'list_name':df3, 'rmse':df3['RMSE'][0]}
# # ,{'list_name':df4, 'rmse':df4['RMSE'][0]}
# # ,{'list_name':df5, 'rmse':df5['RMSE'][0]}
# # ,{'list_name':df6, 'rmse':df6['RMSE'][0]}
# # ,{'list_name':df7, 'rmse':df7['RMSE'][0]}
# # ,{'list_name':df8, 'rmse':df8['RMSE'][0]}
# # ,{'list_name':df9, 'rmse':df9['RMSE'][0]}
# # ,{'list_name':df10, 'rmse':df10['RMSE'][0]}
# # ,{'list_name':df11, 'rmse':df11['RMSE'][0]}
# # ]
# sorted_dic=sorted(dic_list, key=lambda dic_list: dic_list['rmse'], reverse=False)
# list_name=[a['list_name'] for a in sorted_dic] # 打印出来的话就是整个dataframe
# df=pd.concat(list_name,axis=1)
# print(df.head(0))
# df.to_csv(os.path.join(outpath, str(s.split('_',6)[1]) +'6666'+'.csv'))
# a=pd.read_csv(os.path.join(outpath, str(s.split('_',6)[1]) +'6666'+'.csv'))
# df=pd.DataFrame(a.isna().sum().sort_values(ascending=False))
# # 直接用fillna来填,可行, 但还要填drivers!!!
# # 找rmse最低值 对应的来开始填补
# # 一
# b=a.loc[a['LE_Gap_filled'] > -9999, ['LE_Gap_filled','Drivers','RMSE']]
# a['Drivers']=a.loc[a['LE_Gap_filled'] == np.nan, ['Drivers']]
# a['Drivers'].fillna( b['Drivers'] ,inplace = True ) # 自立门户 新建第一个模型的Drivers
# print(a['Drivers'].describe())
# a['RMSE']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE']]
# a['RMSE'].fillna( b['RMSE'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE'].describe())
# b=a.loc[a['LE_Gap_filled.1'] > -9999, ['LE_Gap_filled.1', 'Drivers.1', 'RMSE.1']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.1']=a.loc[a['LE_Gap_filled.1'] == np.nan, ['Drivers.1']]
# a['Drivers.1'].fillna( b['Drivers.1'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.1'].describe())
# a['RMSE.1']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.1']]
# a['RMSE.1'].fillna( b['RMSE.1'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.1'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.1'], inplace=True) # LE Update
# df1=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df1)
# a['Drivers'].fillna(a['Drivers.1'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.1'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 二
# b=a.loc[a['LE_Gap_filled.2'] > -9999, ['LE_Gap_filled.2', 'Drivers.2', 'RMSE.2']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.2']=a.loc[a['LE_Gap_filled.2'] == np.nan, ['Drivers.2']]
# a['Drivers.2'].fillna( b['Drivers.2'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.2'].describe())
# a['RMSE.2']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.2']]
# a['RMSE.2'].fillna( b['RMSE.2'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.2'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.2'], inplace=True) # LE Update
# df2=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df2)
# a['Drivers'].fillna(a['Drivers.2'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.2'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 三
# b=a.loc[a['LE_Gap_filled.3'] > -9999, ['LE_Gap_filled.3', 'Drivers.3', 'RMSE.3']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.3']=a.loc[a['LE_Gap_filled.3'] == np.nan, ['Drivers.3']]
# a['Drivers.3'].fillna( b['Drivers.3'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.3'].describe())
# a['RMSE.3']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.3']]
# a['RMSE.3'].fillna( b['RMSE.3'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.3'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.3'], inplace=True) # LE Update
# df3=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df3)
# a['Drivers'].fillna(a['Drivers.3'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.3'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 四
# b=a.loc[a['LE_Gap_filled.4'] > -9999, ['LE_Gap_filled.4', 'Drivers.4', 'RMSE.4']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.4']=a.loc[a['LE_Gap_filled.4'] == np.nan, ['Drivers.4']]
# a['Drivers.4'].fillna( b['Drivers.4'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.4'].describe())
# a['RMSE.4']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.4']]
# a['RMSE.4'].fillna( b['RMSE.4'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.4'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.4'], inplace=True) # LE Update
# df4=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df4)
# a['Drivers'].fillna(a['Drivers.4'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.4'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 五
# b=a.loc[a['LE_Gap_filled.5'] > -9999, ['LE_Gap_filled.5', 'Drivers.5', 'RMSE.5']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.5']=a.loc[a['LE_Gap_filled.5'] == np.nan, ['Drivers.5']]
# a['Drivers.5'].fillna( b['Drivers.5'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.5'].describe())
# a['RMSE.5']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.5']]
# a['RMSE.5'].fillna( b['RMSE.5'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.5'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.5'], inplace=True) # LE Update
# df5=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df5)
# a['Drivers'].fillna(a['Drivers.5'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.5'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 六
# b=a.loc[a['LE_Gap_filled.6'] > -9999, ['LE_Gap_filled.6', 'Drivers.6', 'RMSE.6']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.6']=a.loc[a['LE_Gap_filled.6'] == np.nan, ['Drivers.6']]
# a['Drivers.6'].fillna( b['Drivers.6'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.6'].describe())
# a['RMSE.6']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.6']]
# a['RMSE.6'].fillna( b['RMSE.6'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.5'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.6'], inplace=True) # LE Update
# df6=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df6)
# a['Drivers'].fillna(a['Drivers.6'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.6'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 七
# b=a.loc[a['LE_Gap_filled.7'] > -9999, ['LE_Gap_filled.7', 'Drivers.7', 'RMSE.7']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.7']=a.loc[a['LE_Gap_filled.7'] == np.nan, ['Drivers.7']]
# a['Drivers.7'].fillna( b['Drivers.7'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.7'].describe())
# a['RMSE.7']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.7']]
# a['RMSE.7'].fillna( b['RMSE.7'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.7'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.7'], inplace=True) # LE Update
# df7=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df7)
# a['Drivers'].fillna(a['Drivers.7'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.7'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 八
# b=a.loc[a['LE_Gap_filled.8'] > -9999, ['LE_Gap_filled.8', 'Drivers.8', 'RMSE.8']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.8']=a.loc[a['LE_Gap_filled.8'] == np.nan, ['Drivers.8']]
# a['Drivers.8'].fillna( b['Drivers.8'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.8'].describe())
# a['RMSE.8']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.8']]
# a['RMSE.8'].fillna( b['RMSE.8'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.8'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.8'], inplace=True) # LE Update
# df8=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df8)
# a['Drivers'].fillna(a['Drivers.8'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.8'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 九
# b=a.loc[a['LE_Gap_filled.9'] > -9999, ['LE_Gap_filled.9', 'Drivers.9', 'RMSE.9']] # 只是有LE数值的地方,用来填充上边的空集
# a['Drivers.9']=a.loc[a['LE_Gap_filled.9'] == np.nan, ['Drivers.9']]
# a['Drivers.9'].fillna( b['Drivers.9'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
# print(a['Drivers.9'].describe())
# a['RMSE.9']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.9']]
# a['RMSE.9'].fillna( b['RMSE.9'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
# print(a['RMSE.9'].describe())
# a['LE_Gap_filled'].fillna(a['LE_Gap_filled.9'], inplace=True) # LE Update
# df8=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
# print(df8)
# a['Drivers'].fillna(a['Drivers.9'],inplace=True) # Drivers Update
# print(a['Drivers'].describe())
# a['RMSE'].fillna(a['RMSE.9'],inplace=True) # Rmse Update
# print(a['RMSE'].describe())
# # 加一下a的时间
# so=pd.read_csv(os.path.join(path1,s))
# so=so[['TIMESTAMP_START' ,'TIMESTAMP_END','LE_F_MDS']]
# print(a['TIMESTAMP_START'])
# print(a.shape)
# a['QC'] = np.nan
# a.loc[a['LE_Gap_filled'] > -9999, 'QC'] = 1
# a.loc[a['LE_Gap_filled'] == -9999 , 'QC'] = 0
# a['LE_Gap_filled'].replace(np.nan,-8888,inplace=True) # 原本是空值的部分 由于变量缺失过多,压根儿补不了的部分 在原数据集中,QC为3,表示的是ERA的数据
# a['LE_Gap_filled'].replace(-9999,np.nan,inplace=True) # | 空值还有种原因是 因为变量组合的原因,没有补到那一块,所以仍旧空
# a['LE_Gap_filled'].fillna(sole['LE_F_MDS'],inplace=True)# 最后依旧是空值
# a.loc[a['LE_Gap_filled'] == -8888 , 'QC'] = -9999
# print(a.dropna().shape[0]/a.shape[0])
# a=a[[ 'TIMESTAMP_END', 'LE_Gap_filled', 'QC', 'Drivers', 'RMSE']]
# a= pd.merge(so,a,how='outer',on='TIMESTAMP_END')
# a['LE_Gap_filled'].fillna(a['LE_F_MDS'],inplace=True)
# a['LE_Gap_filled'].replace(-8888,np.nan,inplace=True)
# a=a[['TIMESTAMP_START', 'TIMESTAMP_END', 'LE_Gap_filled', 'QC', 'Drivers', 'RMSE']]
# a['SW_IN_F_MDS']=np.nan
# a['NETRAD']=np.nan
# a['G_F_MDS']=np.nan
# a['TA_F_MDS']=np.nan
# a['RH']=np.nan
# a['WD']=np.nan
# a['WS']=np.nan
# a['PA_F']=np.nan
# a['VPD_F_MDS']=np.nan
# a['NDVI']=np.nan
# a['TS_F_MDS_1']=np.nan
# a['SWC_F_MDS_1']=np.nan
# a['TA_F_MDS']=np.nan
# a['Drivers'].replace(np.nan,-9999,inplace=True)
# b=a.loc[a['Drivers']!=-9999]
# # print(b)
# for i in b.columns[6:]:
# # print(i)
# c=b[b['Drivers'].str.contains(i)]
# c[i].replace(np.nan,'+',inplace=True)
# a[i]=c[i]
# b=a.count(axis=1)-6
# b=pd.DataFrame(b)
# a['n_drivers']=b
# a['n_drivers'].replace([-1,-2,-3],np.nan,inplace=True)
# a['Drivers'].replace(-9999,np.nan,inplace=True)
# # a.to_csv(os.path.join(path,sole+'.csv'),index = False)
# a.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\FILLED',str(s.split('_',6)[1]) +'.csv'),index = False)
# 创造空列
# df["Empty_1"] = ""
# df["Empty_2"] = np.nan
# df['Empty_3'] = pd.Series()