浅浅保存下

# -*- coding: utf-8 -*-
"""
Created on Fri Oct 28 09:11:05 2022

@author: Lenovo
"""

from sklearn.metrics import make_scorer
import os
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score,mean_squared_error
import shutil
import seaborn as sns  
from scipy.stats import gaussian_kde
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.feature_selection import RFECV
from scipy.interpolate import griddata
from itertools import combinations
from operator import itemgetter
# path=r'D:\Fluxnet\try'
# outpath=r'D:\Fluxnet\OUTCOME\每种变量组合放在一起之前的仓库'

site_list=[]
year_list=[]
total_number=[]
post_dropna_number=[]
post_drop_le_abnormal_number=[]
test_number=[]
train_number=[]
N_estimators=[]
Max_depth=[]
Rmse_list=[]
R2_list=[]
Bias_list=[]
Drivers_column=[]
Filling_rate_list=[]
Feature_list=[]
# ==========================加NDVI
# path1=r'D:\Fluxnet\加了土壤水和土壤温度的\MDS_用'
# path2=r'D:\Fluxnet\ndvi777 - SHAOSHAOSHAO'  # 认真一点谢谢 别老粗心 改了上边不改下边 丢三落四的
# for s,j in zip(os.listdir(path1),os.listdir(path2)):   
#     print(os.listdir(path2))
#     print(s)
#     sole_s=pd.read_csv(os.path.join(path1,s))
#     sole_j=pd.read_csv(os.path.join(path2,j))       
#     sole_s['TIMESTAMP_START']=sole_s['TIMESTAMP_START'].astype('str') 
#     sole_s['TIMESTAMP_START']=pd.to_datetime(sole_s['TIMESTAMP_START'])         
#     sole_j=sole_j[['TIMESTAMP_START','NDVI']]
#     sole_j['TIMESTAMP_START'] = pd.to_datetime(sole_j['TIMESTAMP_START'])            
#     sole_j = sole_j.set_index('TIMESTAMP_START')
#     sole_j = sole_j.resample('1D').interpolate() # 30T 按分钟(T)插值  1D按天插值
#     sole_j = sole_j.reset_inde    
#     sole=pd.merge(sole_s, sole_j,how='left',on='TIMESTAMP_START')    
#     sole['NDVI']=sole['NDVI'].interpolate(method='pad') # 1天一个值
#     sole.to_csv(os.path.join(path3,s))
# ===========================分地类统计
# path0 = r'C:\Users\Lenovo\Desktop\分地类站点'
# path  = r'D:\Fluxnet\加了土壤水和土壤温度的\MDS_用666'
# count = 0 
# for folder in os.listdir(path0): 
#     for i in os.listdir(path):   
#         if i.split('_')[1] in folder:
#             print(i)
#             count+=1
#             shutil.copy(os.path.join(path,i)
#                         ,os.path.join(r'C:\Users\Lenovo\Desktop\分地类站点',folder))            
# print(count)
# =============================合并为一个csv     
# path = r'C:\Users\Lenovo\Desktop\四大类\GRA'
# path_fix = r'C:\Users\Lenovo\Desktop\四大类'
# crop = pd.DataFrame()
# for i in os.listdir(path):
#     sole = pd.read_csv(os.path.join(path,i))
#     crop = pd.concat([crop,sole])    
#     crop.to_csv(os.path.join(path_fix,'gra.csv'),index = False,encoding='utf-8-sig')

# path = r'C:\Users\Lenovo\Desktop\四大类\CSH_OSH_SAV_WAS_WET'
# path_fix = r'C:\Users\Lenovo\Desktop\四大类'
# crop = pd.DataFrame()
# for i in os.listdir(path):
#     sole = pd.read_csv(os.path.join(path,i))
#     crop = pd.concat([crop,sole])   
#     crop.to_csv(os.path.join(path_fix,'CSH_OSH_SAV_WAS_WET.csv'),index = False,encoding='utf-8-sig')
 
# path = r'C:\Users\Lenovo\Desktop\四大类\DBF_DNF_EBF_ENF_MF'
# path_fix = r'C:\Users\Lenovo\Desktop\四大类'
# crop = pd.DataFrame()
# for i in os.listdir(path):
#     sole = pd.read_csv(os.path.join(path,i))
#     crop = pd.concat([crop,sole])   
#     crop.to_csv(os.path.join(path_fix,'DBF_DNF_EBF_ENF_MF.csv'),index = False,encoding='utf-8-sig')
  
# =======================按照0.85/0.15划分train_test  留出MDS 画出九个核密度 插补率 泰勒图 
hou=37
count=0
path_concat = r'C:\Users\Lenovo\Desktop\四大类\REALTRY'
for dalei,count666,doubley in zip(os.listdir(path_concat),[1,2,3,4],[37,38,39,40]):
    sole = pd.read_csv(os.path.join(path_concat,dalei))
    
    site_list1=[]
    year_list1=[]
    test_number1=[]
    train_number1=[]
    rmse_list1=[]
    r2_list1=[]
    bias_list1=[]
    
    sole_raw = sole
    sole_copy = sole
    # sole_raw = sole_raw.dropna(axis=0
    print('原始数据:',sole.shape)
    
    sole.dropna(subset=['LE_F_MDS_QC'],axis=0,inplace=True) #删除LE_F_MDS_QC中含有空值的行 
    print('去掉没QC后的原始数据:',sole.shape)
    
    trainset=sole[sole['LE_F_MDS_QC']==0]
    print('观测数据量:',trainset.shape)
 
    #=================================以LE_F_MDS=20W/m² 为界 白天和晚上分别训练   
    # trainset=trainset[trainset['LE_F_MDS']>=20])
    
    gap=sole[sole['LE_F_MDS_QC']!=0]
    print('需要插补的数据量:',gap.shape)
    
    gap_drople=gap.drop(['LE_F_MDS','LE_F_MDS_QC'
                         ,'TIMESTAMP_START','TIMESTAMP_END']
                         # , 'SW_IN_F_MDS_QC', 'NETRAD'
                         ,axis=1)
    
    # gap_drople=gap_drop.drop(['SW_IN_F_MDS_QC', 'NETRAD'],axis=1)
    
    #===============================每行至少有一个/三个不是空值时保留
    
    # gap_dropna=gap_drople[gap_drople.isnull().T.sum()<=8] 
    gap_dropna=gap_drople.dropna(axis=0,thresh=3) 
    print('去空值后的插补数据:',gap_dropna.shape)
    
    dff=pd.DataFrame(gap_dropna.isna().sum().sort_values(ascending=False))
    print('测试集:',dff)
    
    #看下训练集的空值,可以看出跟插补集不太一样
    print('训练集:',trainset.drop(['LE_F_MDS','LE_F_MDS_QC'
                      ,'TIMESTAMP_START','TIMESTAMP_END']
                      ,axis=1).isna().sum().sort_values(ascending=False))
      
    #==========================获得所有变量组合
    
    def combine(list0,o):
        list1=[]
        for i in combinations(list0,o):
            list1.append(i)
        return list1
    
    #==========================遍历
    
    rmse_list=[]
    r2_list=[]
    bias_list=[]
    filling_rate_list=[]
    
    count =count666
 
    
    fig = plt.figure(figsize=(16,40),dpi=600)
    
    for u in reversed(range(4,13)): 
        
        fillrate_mid_list=[]
        col_list=[]
        list666=[]
        list666.extend(combine(dff.index,u))

        #===========================获取不同插补率的组合特征
        
        list_score=[]
        score=[]
        big_list=[]
        
        for i in range(0,len(list666)):
            
            sco=f'{gap_drople[list(list666[i])].dropna().shape[0] / gap_drople.shape[0]:.2f}'
            
            score+=[f'{gap_drople[list(list666[i])].dropna().shape[0] / gap_drople.shape[0]:.2f}']
            
            list_score+=[{'score':sco,'list':list666[i]}]
            
        # print(list_score)   # print(list_score)
        #=============================plot
        
        key_list=[a['list'] for a in list_score]
    
        len_list = [ len(i) for i in key_list ]
        
        score=[np.float64(i) for i in score]
        
        # plt.rc('font', family='Times New Roman',size=20)
        
        # plt.scatter(len_list,score)
        
        # plt.xlabel('Number of drivers', {'family':'Times New Roman','weight':'normal','size':20})
        
        # plt.ylabel('Filling rate',{'family':'Times New Roman','weight':'normal','size':20})


        #============================填充率最大对应去的变量列表
        
        sorted_list=sorted(list_score, key=lambda list_score: list_score['score'], reverse=True)
        print('********************')
        # print(sorted_list)   # 按降序排列
        
        biggest_score=[a['score'] for a in sorted_list][0]
        # print(biggest_score)
        
        biggest_score_feature_list=[a['list'] for a in sorted_list][0]
        # print(biggest_score_feature_list)
                
        Feature_list.append(biggest_score_feature_list)

        filling_rate_list.append(biggest_score)
        Filling_rate_list.append(biggest_score)
        # print(Feature_list,Filling_rate_list)
        
        #==============================建模准备================================
        
        train_copy=trainset.copy()
        
        print('===========')
        # print(train_copy)
        
        train_copy.drop(['LE_F_MDS_QC','TIMESTAMP_START','TIMESTAMP_END']
                   ,axis=1,inplace=True)#.isna().sum().sort_values(ascending=False)

        # print(train_copy)  #单纯看下
        
        feature=[x for x in biggest_score_feature_list]
        # print(feature)
        
        train_option=train_copy[feature]
        train_option['LE_F_MDS']=train_copy['LE_F_MDS']
            
        print(train_option.shape)#原始数值
        print(train_option.isna().sum().sort_values(ascending=True))
            
            #============================去除空值=======================================
        train_option_dropna=train_option.dropna() #训练数据去空值
        print('训练集去掉空值后: ',train_option_dropna.shape)
    
            #===========================去除LE异常值====================================
        # des=train_option_dropna.describe()
        # print(des)
        # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
        # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
        # print(shangxu)
        # print(xiaxu)
        # c=train_option_dropna[(train_option_dropna['LE_F_MDS'] <=shangxu[-1])
        #         &(train_option_dropna['LE_F_MDS'] >=xiaxu[-1])]
        c=train_option_dropna    
        print(c.shape)
            
        Drivers=c.drop(['LE_F_MDS'],axis=1)
            
        Drivers_column+=[' '.join(Drivers.columns.tolist())]
            
        LE=c['LE_F_MDS']
        x_train,x_test,y_train,y_test=train_test_split(Drivers,LE
                                                        ,test_size=0.20
                                                        ,random_state=(0))                            
        print(x_train.shape)
        print(x_test.shape)
        print(y_train.shape)
        print(y_test.shape)
        
        #========================网格搜索+OOB 寻找最有超参数========================
        
        # # def simpleGridSearch(x_train, x_test, y_train, y_test):
    
        # # 使用for循环实现网格搜索
        # # grid search start
        # best_score = 100
        # rmse = []
        # for n_esti in [300,800,1100,1500]:
        #     for max_dep in [30,90,110]:
        #         rf = RandomForestRegressor(n_estimators=n_esti
        #                                    ,max_depth=max_dep
        #                                    ,oob_score=True
        #                                    ,random_state=(0)) # 对于每种参数可能的组合,进行一次训练;
        #         rf.fit(x_train,y_train)
        #         score = np.sqrt(mean_squared_error(y_train, rf.oob_prediction_))
        #         print(score)
                
        #         rmse+=[score]
                    
        #         if score < best_score:#找到表现最好的参数
                      
        #             n_estimators = n_esti
        #             max_depth = max_dep
                    
        #             best_score = score
        # print("Best score:{:.2f}".format(best_score))
        
            # return n_estimators,max_depth
        #========================GridsearchCV 寻找最优超参数=========================
        
        # rfr=RandomForestRegressor()
       
        # param_grid={'n_estimators':[300,800,1100]#300,500,700,900,1100,1300,1500,1700,1900,2100
        #             #500,800,1100,1400,1700,2000 1,2,3,4,5,6
        #           ,'max_depth':[30,80,110]}#30,50,70,90,110,150   30,50,70,90,110
        
        # gs=GridSearchCV(rfr 
        #                 ,param_grid=param_grid
        #                 ,scoring=make_scorer(mean_squared_error,greater_is_better=False) 
                          # ,score=['r2','neg_root_mean_squared_error']      # sklearn.metrics.SCORES.keys()       
                          #,refit='neg_root_mean_squared_error'
        #                 ,cv=2
        #                 ,verbose=1
        #                 ,n_jobs=-1) 
        
        # gs.fit(x_train,y_train)

        # max_depth=gs.best_params_['max_depth']
        # Max_depth+=[max_depth]
        # print(gs.best_params_)
        
        # n_estimators=gs.best_params_['n_estimators']
        # N_estimators+=[n_estimators]
        # print(np.sqrt(-1*gs.score(x_test,y_test)))
        
        # #设置字体格式
        # sns.set(style='ticks')
        # plt.rc('font', family='Times New Roman',size=20) 
        # # plt.rcParams["font.weight"] = "bold"
        # # plt.rcParams["axes.labelweight"] = "bold"
        
        # #=============================Heat map of RMSE=============================
        
        # gs_df=pd.DataFrame(gs.cv_results_)
        # gs_df['RMSE']=np.sqrt(-1*(gs_df['mean_test_score']))
        # gs_df[['MAX_DEPTH','N_ESTIMATORS']]=gs_df[['param_max_depth','param_n_estimators']]
        
        # heatmap_data=gs_df.pivot_table(index='MAX_DEPTH'
        #                                 ,columns='N_ESTIMATORS'
        #                                 ,values='RMSE')
        
        # plt.figure(figsize=(10, 10),dpi=500)
        
        # heat_map=sns.heatmap(data=heatmap_data
        #                       ,linewidths=.05 #单个格子边框宽度 linecolor格子边框颜色
        #                       ,fmt='.2f'
        #                       ,cmap='jet'#'PuBuGn_r'
        #                       ,cbar=True
        #                       ,cbar_kws={'label':'RMSE of Cross-validation (W/m²)'
        #                                 ,'orientation':'vertical'#默认竖直,水平为horizontal
        #                                 ,'format':'%.2f'
        #                                 ,'extend':'both'          
        #                                 }#'pad':colorbar与heatmap间的距离
        #                         )# cmap = 'PuBuGn'  'cubehelix_r' 'PuBuGn_r' 'YlGnBu_r'
        #                       #  mask=heatmap_data>10 数据掩膜
        #                       # ,annot=True #默认FALSE不显示单个格子数值
        #                       # ,annot_kws={'size':15,'weight':'normal','color':'black'}#单个格子字体设置
        #                       #  heat_map.figure.colorbar(heat_map.collections[0],extend='both').set_label('RMSE of Cross-validation (W/m²)',fontdict={'size':16})
        #                       # 'interpolation':'nearest'
        # plt.gca ().invert_yaxis ()                     
        # plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\HeatMap1',s.split('_',6)[1])
        #             , bbox_inches='tight', dpi=500)
        
        # plt.show()
        # # plt.clf ()
        # # plt.close ()
        
        #==========================Interpolation map of RMSE=======================
       
        # y,x=np.mgrid[1500:300:4j,30:110:3j]#300:2100:10j,30:150:7j #1:10:10j,1:10:10j 500:2000:6j,30:110:5j

        # points=np.hstack((x.flatten()[:,None],y.flatten()[:,None]))
        
        # y1,x1=np.mgrid[300:1500:500j,30:110:500j]#300:2100:1000j,30:150:1000j 1:10:1000j,1:10:1000j
        
        # z1=griddata(points 
        #             ,np.array(rmse)
        #             ,(x1,y1)
        #             ,method='cubic')
        
        # plt.figure(figsize=(10,8),dpi=400)
        
        # plt.imshow(z1
        #           ,extent=[np.min(x),np.max(x),np.min(y),np.max(y)]
        #           ,cmap='jet'
        #           ,aspect='auto')
        
        # print(points)

        # plt.colorbar(extend='both', label='RMSE of OOB (W/m²)')
        
        # plt.xlabel('MAX_DEPTH') 
        # plt.ylabel('N_ESTIMATORS')
        # # a=[i for i in range(3,12)]
        # plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\InterpolationMap1',s.split('_',6)[1])
        #             , bbox_inches='tight', dpi=500)
       
        # plt.show()
        # # plt.clf ()
        # # plt.close ()
            
            #==================================建模====================================
            
        rf=RandomForestRegressor(n_estimators=1100
                                      ,max_depth=80
                                       ,oob_score=True
                                      ,random_state=(0))   
        rf.fit(x_train,y_train)    
        # rf.fit(Drivers,LE)     


        # pred_oob = rf.oob_prediction_ #袋外预测值
        # print(len(pred_oob))
        # print(pred_oob)
        # rmse=np.sqrt(mean_squared_error(LE, pred_oob)) #袋外均方根误差
        # rmse_list.append(rmse)
        # Rmse_list.append(rmse)
        # rmse_df=pd.DataFrame({'rmse':rmse_list})
        # print(rmse_df)
        # print(rmse_list)
          
        rmse=np.sqrt(mean_squared_error(y_test,rf.predict(x_test)))
        rmse_list.append(rmse)
        Rmse_list.append(rmse)
        rmse_df=pd.DataFrame({'rmse':rmse_list})
        print(rmse_df)
        print(rmse_list)
        
        # r2=rf.oob_score_
        r2=r2_score(y_test,rf.predict(x_test))  
        r2_list.append(r2)
        R2_list.append(r2)
        r2_df=pd.DataFrame({'r2':r2_list})
        
        # bias=(pred_oob-LE).mean()
        bias=(rf.predict(x_test)-y_test).mean()
        bias_list.append(bias)
        Bias_list.append(bias)
        bias_df=pd.DataFrame({'bias':bias_list})
        
        #==============================复制一下整个的 插补 保存 比较 导出
        
        gap_dropna_copy=gap_dropna.copy()
        gap_dropna_copy=gap_dropna_copy[feature]
        gap_dropna_copy=gap_dropna_copy.dropna()
        gap_dropna_copy.loc[:, 'LE_gap_filled'] = rf.predict(gap_dropna_copy)

        
        le=sole.copy()
        le['LE_F_MDS_QC'].replace([1,2,3], np.nan, inplace=True)
        le['LE_F_MDS_QC'].replace(0, -9999, inplace=True)
        le['LE_F_MDS_QC'].fillna(gap_dropna_copy['LE_gap_filled'], inplace=True)
        le['RMSE']=[rmse]*sole.shape[0]
        
        dic={'TIMESTAMP_START':le['TIMESTAMP_START'].tolist()
            ,'TIMESTAMP_END':le['TIMESTAMP_END'].tolist() 
            ,'LE_Gap_filled': le['LE_F_MDS_QC'].tolist()
            ,'RMSE': le['RMSE']
            ,'Drivers': [' '.join(Drivers.columns.tolist())]*sole.shape[0]
            }
        print(le['TIMESTAMP_START'])
        print(le['TIMESTAMP_END'])
        
        dic_df = pd.DataFrame(dic)
        # pd.set_option('display.max_rows',None)
        # print(big_list)
        
        # dic_df.to_csv(os.path.join(outpath, str(dalei.split('_',6)[1])  +'.csv'),index = False)
        
        
        #==============================高斯核密度散点图==============================
            
        # post_gs=pd.DataFrame({'predict':pred_oob,'in_situ':LE,})
        post_gs=pd.DataFrame({'predict':rf.predict(x_test),'in_situ':y_test,}) 
        post_gs['index']=[i for i in range(post_gs.shape[0])]
        post_gs=post_gs.set_index('index')
        # print('实际的: ',pd.DataFrame(y_test))
        # print('预测的: ',pd.DataFrame(rf.predict(x_test)))
        # plt.scatter(post_gs['in_situ'],post_gs['predict'])
        # sns.jointplot(post_gs,x=post_gs['in_situ'],y=post_gs['predict'],kind='reg');
    
        x=post_gs['in_situ']
        y=post_gs['predict']
        xy = np.vstack([x,y])#计算点密度
        z = gaussian_kde(xy)(xy)#高斯核密度
        #根据密度对点进行排序,最密集的点在最后绘制
        idx = z.argsort()
        x, y, z = x[idx], y[idx], z[idx]
        
        fw = 800
   
    
        ax = fig.add_subplot(10,4,count)
        count += 4
        scatter = ax.scatter(x,y,marker='o',c=z,s=15,label='LST',cmap='PuBuGn_r') # o是实心圆,c=是设置点的颜色,cmap设置色彩范围,'Spectral_r'和'Spectral'色彩映射相反
        divider = make_axes_locatable(ax) #画色域图
        plt.scatter(x, y, c=z, s=7, cmap='jet')
        plt.axis([0, fw, 0, fw])  # 设置线的范围
        
        
        plt.title(10, 700, dalei, family = 'Times New Roman',size=21)
        plt.text(len(feature), family = 'Times New Roman',size=21)
        # plt.text(10, 600, 'Drivers = %s' % len(feature), family = 'Times New Roman',size=21)
        # plt.text(10, fw-18, 'Size = %.f' % len(y), family = 'Times New Roman',size=15) # text的位置需要根据x,y的大小范围进行调整。
        # plt.text(10, fw-26, 'RMSE = %.3f W/m²' % rmse, family = 'Times New Roman',size=15)
        # plt.text(10, fw-34, 'R² = %.3f' % r2, family = 'Times New Roman',size=15)
        # plt.text(10, fw-42, 'BIAS = %.3f W/m²' % bias, family = 'Times New Roman',size=15)
        ax.set_xlabel('Station LE (W/m²)',family = 'Times New Roman',size=21)
        ax.set_ylabel('Estimated LE (W/m²)',family = 'Times New Roman',size=21)
        plt.plot([0,fw], [0,fw], 'gray', lw=2)  # 画的1:1线,线的颜色为black,线宽为0.8
        plt.xlim([0,fw])
        plt.ylim([0,fw])
        plt.xticks(fontproperties='Times New Roman',size=20)
        plt.yticks(fontproperties='Times New Roman',size=20)
        
        plt.tight_layout()
        
     

        # site_list+=[dalei.split('_',6)[1]]
        # year_list+=[int(dalei.split('_',6)[5].split('-',1)[1])
        #             -int(dalei.split('_',6)[5].split('-',1)[0])+1]  
            
        # total_number.append(int(sole.shape[0]))
        # post_dropna_number.append(int(train_option_dropna.shape[0]))
        # post_drop_le_abnormal_number.append(int(c.shape[0]))
        # test_number.append(int(c.shape[0]*0.25))
        # train_number.append(int(c.shape[0]*0.75))
        # N_estimators.append(n_estimators)
        # Max_depth.append(max_depth)
        #===============================================导出
         
        # dic={'SITES':site_list,'YEAR':year_list,'原始数目':total_number
        #           ,'去掉空值后':post_dropna_number
        #           ,'去掉LE异常值后':post_drop_le_abnormal_number
        #           ,'TRAIN_NUMBER':train_number
        #           ,'TEST_NUMBER':test_number
        #           # ,'n_estimators':N_estimators,'max_depth':Max_depth
        #           ,'RMSE':Rmse_list,'R2':R2_list,'BIAS':Bias_list
        #           ,'Drivers_column':Drivers_column
        #           ,'Filling_rate' : Filling_rate_list
        #         }
            
        # dic=pd.DataFrame(dic)
        # # print(dic)
        # dic.to_csv(r'D:\Fluxnet\OUTCOME\RMSE_ALL\RMSE_All_Day.csv')
        
        # dic_sole={
        #           'RMSE':rmse_list,'R2':r2_list,'BIAS':bias_list
        #           } 
        # dic_sole=pd.DataFrame(dic_sole)
        # dic_sole.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\RMSE', str(dalei.split('_',6)[1])  +'.csv'),index = False)
        
                

        #============================================================MDS_GAP
        
    #     print('用来MDS原始数据集去掉空值后的值: ',sole_raw.shape)
    #     # all_year = int((dalei.split('_')[5]).split('-')[1])-int((dalei.split('_')[5]).split('-')[0])+1
        
    #     MDS_GAP=sole_raw

    #     MDS_GAP['Year']=MDS_GAP['TIMESTAMP_END']
    #     MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
    #     MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
    #     MDS_GAP['Year'] = MDS_GAP['TIMESTAMP_END'].dt.year  #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
        
        
    #     MDS_GAP['DoY']=MDS_GAP['TIMESTAMP_END']
    #     MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
    #     MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
    #     doy=[]
    #     for i in MDS_GAP['TIMESTAMP_END']:
    #         doy += [i.strftime("%j")]
    #     MDS_GAP['DoY'] = doy  #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648


    #     MDS_GAP['Hour'] = MDS_GAP['TIMESTAMP_END']
    #     MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
    #     MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
    #     hour=[]
    #     for i in MDS_GAP['TIMESTAMP_END']:
    #         hour += [int(i.strftime('%H'))+float(i.strftime('%M'))/60]
    #     MDS_GAP['Hour'] = hour   
    #     # MDS_GAP['Hour'] = [MDS_GAP['TIMESTAMP_END'].dt.hour+MDS_GAP['TIMESTAMP_END'].dt.minute/60]
    #     #老报错 Time stamp i
    #     # doy_first=[1]*47
    #     # doy_then = []
        
    #     # for day in range(2,366):
            
    #     #     doy_then+=[day]*48
        
    #     # doy_last = [366]
        
    #     # doy = (doy_first + doy_then + doy_last) * 1 #第一年的hour 是从0.5开始的,故47天 分开算      
    #     # print(len(doy))
        
    #     # MDS_GAP=sole_raw
    #     # MDS_GAP=MDS_GAP[:len(17520*all_year)]
    
    #     # MDS_GAP['DoY']=doy *  all_year  
 
        
    #     # first_year = int((s.split('_')[5]).split('-')[0])
    #     # last_year = int((s.split('_')[5]).split('-')[1])
        
    #     # year=[]
    #     # for i in range(first_year , first_year+1):
        

    #     #     year +=[i] *17520
        
    #     # MDS_GAP['Year'] = year
    

    #     # hour_first=[]
    #     # hour_first+=[0.5*i for i in range(1,48)]
    #     # hour_then=[]
    #     # hour_then+=[0.5*i for i in range(48)]
    #     # hour_then = hour_then*364
    #     # hour_last = [0.0]
    #     # hour=hour_first + hour_then + hour_last
    #     # hour=hour * 1

    #     # MDS_GAP['Hour']=hour *  all_year 
  
    #     MDS_GAP.loc[:,'LE']=y_test
        
    #     MDS_GAP['LE'].to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来rmse的原始值666', str(dalei.split('_',6)[1]) + '.txt'),sep='	',index = False)
    #     print('=======================',MDS_GAP['LE'])
        
    #     MDS_GAP['LE_F_MDS']=sole_raw['LE_F_MDS']
    #     # print('=======================',MDS_GAP['LE_F_MDS'])
        
    #     MDS_GAP.loc[MDS_GAP['LE']>=-9999,['LE']] = -9999
    #     print('=======================',MDS_GAP['LE'])
        
    #     MDS_GAP['LE'].fillna(MDS_GAP['LE_F_MDS'],inplace=True)
    #     # print('=======================',MDS_GAP['LE'])
    #     # MDS_GAP['rH']=MDS_GAP['RH']
    #     # MDS_GAP['Tsoil']=MDS_GAP['TS_F_MDS_1']
        
    #     MDS_GAP['Rg']=MDS_GAP['SW_IN_F_MDS']
       
    #     MDS_GAP['Tair']=MDS_GAP['TA_F_MDS']
       
    #     MDS_GAP['VPD']=MDS_GAP['VPD_F_MDS']
       
    #     MDS_GAP['NEE']=MDS_GAP['NEE_VUT_REF']
    #     MDS_GAP=MDS_GAP[['Year','DoY','Hour','NEE','LE','Rg','Tair','VPD']]#,'Tsoil','rH',
        
    #     # Drivers control Rg <= 1200W/m² Ta <= 2.5℃W/m² VPD <= 50hPa
    #     MDS_GAP.loc[MDS_GAP['Rg'] > 1200 , ['Rg']] = -9999
    #     # MDS_GAP.loc[MDS_GAP['Tair'] > 2.5 , ['Tair']] ==-9999
    #     MDS_GAP.loc[MDS_GAP['VPD'] > 50 , ['VPD']] = -9999
    #     #将单位插到第零行的位置上r
    #     row = 0  # 插入的位置
    #     value = pd.DataFrame([['-', '-', '-', 'umolm-2s-1','Wm-2', 'Wm-2', 'degC','hPa']],columns=MDS_GAP.columns)  # 插入的数据  'degC','%',
    #     df_tmp1 = MDS_GAP[:row]
    #     df_tmp2 = MDS_GAP[row:]
        
        

    #     # 插入合并数据表
    #     MDS_GAP = df_tmp1.append(value).append(df_tmp2)
        
    #     MDS_GAP = MDS_GAP.fillna(-9999)
    #     print(MDS_GAP.head())
        
    #     # MDS_GAP.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\MDS_TRY666', str(dalei.split('_',6)[1])  + '.txt'),sep='	',index = False)
    
    #     # else:
    #     #     pass
           
            
    #         # doy_first=[1]*47
    #         # doy_then = []
            
    #         # for day in range(2,366):
                
    #         #     doy_then+=[day]*48
            
    #         # doy_last = [366]
            
    #         # doy = (doy_first + doy_then + doy_last) * all_year #第一年的hour 是从0.5开始的,故47天 分开算      
    #         # print(len(doy))
            
            
    #         # MDS_GAP=sole_raw
    #         # MDS_GAP=MDS_GAP[:len(doy)]
        
    #         # MDS_GAP['DoY']=doy     
           
    #         # # MDS_GAP['Year']=MDS_GAP['TIMESTAMP_START']
    #         # # MDS_GAP['TIMESTAMP_START']=MDS_GAP['TIMESTAMP_START'].astype('str')
    #         # # MDS_GAP['TIMESTAMP_START']=pd.to_datetime(MDS_GAP['TIMESTAMP_START'])
    #         # # MDS_GAP['Year'] = MDS_GAP['TIMESTAMP_START'].dt.year  #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
    #         # # MDS_GAP['Year'] = MDS_GAP['Year']
            
            
    #         # first_year = int((s.split('_')[5]).split('-')[0])
    #         # last_year = int((s.split('_')[5]).split('-')[1])
            
    #         # year=[]
    #         # for i in range(first_year , last_year + 1):
            
    
    #         #     year +=[i] *17520
            
    #         # MDS_GAP['Year'] = year
                
                
    
    #         # hour_first=[]
    #         # hour_first+=[0.5*i for i in range(1,48)]
    #         # hour_then=[]
    #         # hour_then+=[0.5*i for i in range(48)]
    #         # hour_then = hour_then*364
    #         # hour_last = [0.0]
    #         # hour=hour_first + hour_then + hour_last
    #         # hour=hour * all_year
            
    #         # MDS_GAP['Hour']=hour
         
            
    #         # MDS_GAP.loc[:,'LE']=y_test
            
    #         # MDS_GAP['LE'].to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来rmse的原始值666', str(s.split('_',6)[1]) + '.txt'),sep='	',index = False)
    #         # print('=======================',MDS_GAP['LE'])
            
    #         # MDS_GAP['LE_F_MDS']=sole_raw['LE_F_MDS']
    #         # # print('=======================',MDS_GAP['LE_F_MDS'])
            
    #         # MDS_GAP.loc[MDS_GAP['LE']>=-9999,['LE']] = -9999
    #         # print('=======================',MDS_GAP['LE'])
            
    #         # MDS_GAP['LE'].fillna(MDS_GAP['LE_F_MDS'],inplace=True)
    #         # # print('=======================',MDS_GAP['LE'])
    #         # # MDS_GAP['rH']=MDS_GAP['RH']
    #         # # MDS_GAP['Tsoil']=MDS_GAP['TS_F_MDS_1']
            
    #         # MDS_GAP['Rg']=MDS_GAP['SW_IN_F_MDS']
           
    #         # MDS_GAP['Tair']=MDS_GAP['TA_F_MDS']
           
    #         # MDS_GAP['VPD']=MDS_GAP['VPD_F_MDS']
           
    #         # MDS_GAP['NEE']=MDS_GAP['NEE_VUT_REF']
    #         # MDS_GAP=MDS_GAP[['Year','DoY','Hour','NEE','LE','Rg','Tair','VPD']]#,'Tsoil','rH',
            
    #         # # Drivers control Rg <= 1200W/m² Ta <= 2.5℃W/m² VPD <= 50hPa
    #         # MDS_GAP.loc[MDS_GAP['Rg'] > 1200 , ['Rg']] = -9999
    #         # # MDS_GAP.loc[MDS_GAP['Tair'] > 2.5 , ['Tair']] ==-9999
    #         # MDS_GAP.loc[MDS_GAP['VPD'] > 50 , ['VPD']] = -9999
    #         # #将单位插到第零行的位置上r
    #         # row = 0  # 插入的位置
    #         # value = pd.DataFrame([['-', '-', '-', 'umolm-2s-1','Wm-2', 'Wm-2', 'degC','hPa']],columns=MDS_GAP.columns)  # 插入的数据  'degC','%',
    #         # df_tmp1 = MDS_GAP[:row]
    #         # df_tmp2 = MDS_GAP[row:]
            
            
    
    #         # # 插入合并数据表
    #         # MDS_GAP = df_tmp1.append(value).append(df_tmp2)
            
    #         # MDS_GAP = MDS_GAP.fillna(-9999)
    #         # print(MDS_GAP.head())
            
    #         # MDS_GAP.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\MDS_TRY666', str(s.split('_',6)[1])  + '.txt'),sep='	',index = False)
        
         
        
    #     #===============================================Various length of gap
        
    #     # for j,k in zip([0.05,0.075,0.125],[6,24,48]): #一天 七天 一月 一共占总数据的0.25
    #     # #48,336,720
          
    #     #   df0=sole.copy()
    #     #   print(len(df0))
    #     #   df=df0[df0['LE_F_MDS_QC']==0]
    #     #   print(df['LE_F_MDS_QC'])
    #     #   print(len(df))
    #     #   print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
          
          
          
    #     #   #可以开始make gap的位置区间
    #     #   start_point=np.arange(df['LE_F_MDS_QC'].index[0],df['LE_F_MDS_QC'].index[-1]-k+1) #k是gap长度 
         
    #     #   #gap的个数
    #     #   gap_number=int(len(df)*j/k)
    #     #   print(gap_number)
          
    #     #   # 随机选择开始的位置
    #     #   # np.random.seed(1) # 每次的随机数都是一样的
          
    #     #   gap_posi=np.random.choice(start_point,gap_number*3) #多一点选择的余地
          
    #     #   posi=sorted(gap_posi) # 排一下顺序}
    #     #   print(posi)
          
    #     #   count=0
    #     #   gap_qujian=[]
          
    #     #   # 并不是每个随机开始的位置都可以用,不能和以前的gap开始的位置重叠,gap的位置数据量也要充足

    #     #   for m,n in enumerate(posi): # m是索引 n是开始的位置(其实也是索引)
             
    #     #       # 单个gap的区间
    #     #       # 意思是从第多少位到多少位是gap区间
    #     #       gap_danqujian_list =[h for h in np.arange(n,n+k)]
    #     #       print(gap_danqujian_list)
    #     #       print('==')
    #     #       # 整个DataFrame中的gap
    #     #       gap_df = df0.iloc[gap_danqujian_list]
    #     #       # print(gap_df)
    #     #       # gap区间要在限定的范围内
    #     #       if np.isin(gap_danqujian_list,start_point).all():
                 
    #     #           # 不同长度gap不能重叠
    #     #           if m>0 and n-posi[m-1] <= k: 
    #     #               continue
    
    
    #     #           # gap区间内要有足够的原始数据
    #     #           if len(gap_df.dropna()) / len(gap_df) < 0.5:
    #     #               continue
         
    #     #           gap_qujian.extend(gap_danqujian_list)
    #     #           print(gap_qujian)
    #     #           count += 1

 
    #     #       if count == gap_number: # 每种gap的数目都要达到gap_number,达到规定的比例才会停止
                  
    #     #           print('@@@@@@@@@@@@@@@@@@@@@')
    #     #           print(count)
    #     #           break
          
    #     #   # 要去掉索引对应的le为空的suoyin
    
    #     #   test_df=df0.iloc[gap_qujian] # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
    #     #   print(test_df)
    #     #   print(len(test_df))
         
    #     #   test=test_df.loc[test_df['LE_F_MDS_QC']==0,].dropna(axis=0) # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
    #     #   print(test)
    #     #   print(len(test))
  
    #     #   train_index=np.setdiff1d(df0.index,test_df.index) # setdiff1d 前面那个数组有 后边那个没有的值
    #     #   print(train_index)
        
    #     #   train_df=df0.iloc[train_index] # # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
    #     #   train=train_df.loc[train_df['LE_F_MDS_QC']==0,].dropna(axis=0)
    #     #   print(train)
    #     #   print(len(train))
        
        
    #     #   pd.set_option('display.max_columns', None)
    #     # # print(test.head(5))
    #     #   print(train.shape)
    #     #   print(test.shape)
        
    #     #   a=pd.DataFrame(test.isna().sum().sort_values(ascending=False))
            
    #     # # des=test.describe()
    #     # # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
    #     # # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
    #     # # test=test[(test['LE_F_MDS'] <=shangxu[3])
    #     # #           &(test['LE_F_MDS'] >=xiaxu[3])]
     
        
    #     #  # print(des)
    #     #  # des=train.describe()
    #     #  # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
    #     #  # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
    #     #  # train=train[(train['LE_F_MDS'] <=shangxu[3])
    #     #  #             &(train['LE_F_MDS'] >=xiaxu[3])]
    #     #  # print(xiaxu)
             
    #     #   train=train.drop(['TIMESTAMP_START','TIMESTAMP_END','LE_F_MDS_QC'],axis=1)
    #     #   test=test.drop(['TIMESTAMP_START','TIMESTAMP_END','LE_F_MDS_QC'],axis=1)
        
    #     #   # train_Drivers=train.drop(['LE_F_MDS'],axis=1)
    #     #   train_Drivers=train[feature]
    #     #   print(train_Drivers.index)
         
    #     #   # test_Drivers=test.drop(['LE_F_MDS'],axis=1) 
    #     #   test_Drivers=test[feature]
    #     #   print(test_Drivers.index)
         
    #     #   train_LE=train['LE_F_MDS']
    #     #   print(train_LE.index)
         
    #     #   test_LE=test['LE_F_MDS']
    #     #   print(test_LE.index)
         
    #     #   # x_train,x_test,y_train,y_test=train_test_split(Drivers,LE
    #     #   #                                                ,test_size=0.25
    #     #   #                                                ,random_state=(0))                            
    #     #   print(train_Drivers.shape)
    #     #   print(test_Drivers.shape)
    #     #   print(train_LE.shape)
    #     #   print(test_LE.shape)
     
    #     #   # ==============================建模====================================
         
    #     #   rf1=RandomForestRegressor(n_estimators=1100
    #     #                             ,max_depth=80
    #     #                             ,random_state=(0))   
    #     #   rf1.fit(train_Drivers,train_LE)    
         
    #     #   rmse1=np.sqrt(mean_squared_error(test_LE,rf1.predict(test_Drivers)))
         
  
    #     #   rmse_list1.append(rmse1)
    #     #   rmse_df=pd.DataFrame({'rmse':rmse_list1})
    #     #   print(rmse_df)
         
    #     #   r2=r2_score(test_LE,rf1.predict(test_Drivers))  
    #     #   r2_list1.append(r2)
    #     #   r2_df=pd.DataFrame({'r2':r2_list1})
         
    #     #   bias=(rf1.predict(test_Drivers)-test_LE).mean()
    #     #   bias_list1.append(bias)
    #     #   bias_df=pd.DataFrame({'bias':bias_list1})
         
    #     #   site_list1+=[s.split('_',6)[1]]
    #     #   year_list1+=[int(s.split('_',6)[5].split('-',1)[1])
    #     #               -int(s.split('_',6)[5].split('-',1)[0])+1]  
         
    #     #   # total_number.append(int(b.shape[0]))
    #     #   # post_dropna_number.append(int(a.shape[0]))
    #     #   # post_drop_le_abnormal_number.append(int(c.shape[0]))
    #     #   test_number1.append(int(test.shape[0]))
    #     #   train_number1.append(int(train.shape[0]))
         
   
    #     #   dic2={'SITES':site_list1,'YEAR':year_list1
    #     #         # ,'原始数目':total_number
    #     #         # ,'去掉空值后':post_dropna_number
    #     #         # ,'去掉LE异常值后':post_drop_le_abnormal_number
    #     #         ,'TRAIN_NUMBER':train_number1
    #     #         ,'TEST_NUMBER':test_number1
    #     #         # ,'n_estimators':N_estimators,'max_depth':Max_depth
    #     #         ,'RMSE':rmse_list1,'R2':r2_list1,'BIAS':bias_list1
               
    #     #       }
         
    #     #   dic2=pd.DataFrame(dic2)
    #     #   print(dic2)
    #     #   dic2.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\GAP_diff', str(s.split('_',6)[1]) + '.csv'),index = False)
        
    # #     plt.tight_layout()
    

    #===================================RMSE&FILLING RATE 双轴图
        
    #=============================== 变量个数 VS.插补率
    
    # fig = plt.subplot(8,5,36+dalei)    
    # plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\DoubleY',s.split('_',6)[1])
    #             , bbox_inches='tight', dpi=500)
    
    x = [12,11,10,9,8,7,6,5,4] #reversed(range(len(df.index)+1))matplotlib does not support generators as input
    y1 = rmse_list
    y2 = filling_rate_list
    
    # fig = plt.figure(figsize=(12,8),dpi=400)

    ax = fig.add_subplot(10,4,doubley)

    
    line1=ax.plot(x, y1,color='red',linestyle='--',marker='o',linewidth=2.5)
    
    ax.set_ylabel('RMSE of 25% tesing set', {'family':'Times New Roman','weight':'normal','size':21},color='red')
    ax.set_xlabel('Number of drivers',{'family':'Times New Roman','weight':'normal','size':21})
    ax.tick_params(labelsize=20)
    
    # ax1.set_title("")
    ax2 = ax.twinx()  # this is a important function
    #ax2.set_ylim([-0.05,1.05]) # 设置y轴取值范围   
    # ax2.set_yticks([0.0,0.3,0.5,0.7,0.9]) # 设置刻度范围 
    # ax2.set_yticklabels([0.0,0.3,0.5,0.7,0.9]) # 设置刻度
    line2=ax2.plot(x, y2,color='blue',marker='o',linewidth=2.5)
    ax2.tick_params(labelsize=20)
    ax2.set_ylabel('Filling rate', {'family':'Times New Roman','weight':'normal','size':21},color='blue')
    # ax2.invert_yaxis() #invert_yaxis()翻转纵轴,invert_xaxis()翻转横轴
    
    plt.tick_params(labelsize=20)
    plt.xticks(np.arange(3, 13, 1),fontproperties='Times New Roman',size=20)
   
    # line=line1+line2
    # ax1.legend(line, [i.get_label() for i in line] ,loc='upper left')
    
    # for x,y in zip(x,y1):
    #     ax1.text(x,y,'%.0f' % y,fontdict={'fontsize:15'},color='red')
        
    # for x,y in zip(x,y2):
    #     ax2.text(x,y,'%.2f' % y,fontdict={'fontsize:15'},color='blue')
    
    # plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\8280',dalei.split('_',6)[1])
    #                       , bbox_inches='tight', dpi=500)
    # plt.show()
    plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\828','dalei')
                      , bbox_inches='tight', dpi=500)
    plt.show()
       
    #========================================读一下八个csv
    
    # dic_list=[]
    
    # for i in range(3,13):
        
    #     df=pd.read_csv(os.path.join(outpath,str(s.split('_',6)[1]) + str(i) + '.csv'))
        
    #     dic={'list_name':df, 'rmse':df['RMSE'][0]}
        
    #     dic_list+=[dic]
        
    #     # print(dic_list)
    # print('=============================================')
        
    # # df3=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '3' +'.csv'))
    # # df4=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '4' +'.csv'))
    # # df5=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '5' +'.csv'))
    # # df6=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '6' +'.csv'))
    # # df7=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '7' +'.csv'))
    # # df8=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '8' +'.csv'))
    # # df9=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '9' +'.csv'))
    # # df10=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '10' +'.csv'))
    # # df11=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '11' +'.csv'))   
    
    # # dic=[{'list_name':df3, 'rmse':df3['RMSE'][0]}
    # #      ,{'list_name':df4, 'rmse':df4['RMSE'][0]}
    # #      ,{'list_name':df5, 'rmse':df5['RMSE'][0]}
    # #      ,{'list_name':df6, 'rmse':df6['RMSE'][0]}
    # #      ,{'list_name':df7, 'rmse':df7['RMSE'][0]}
    # #      ,{'list_name':df8, 'rmse':df8['RMSE'][0]}
    # #      ,{'list_name':df9, 'rmse':df9['RMSE'][0]}
    # #      ,{'list_name':df10, 'rmse':df10['RMSE'][0]}
    # #      ,{'list_name':df11, 'rmse':df11['RMSE'][0]}
    # #     ]
    
    # sorted_dic=sorted(dic_list, key=lambda dic_list: dic_list['rmse'], reverse=False)
    
    # list_name=[a['list_name'] for a in sorted_dic] # 打印出来的话就是整个dataframe

    # df=pd.concat(list_name,axis=1)
        
    # print(df.head(0))
    # df.to_csv(os.path.join(outpath, str(s.split('_',6)[1]) +'6666'+'.csv'))


    # a=pd.read_csv(os.path.join(outpath, str(s.split('_',6)[1]) +'6666'+'.csv'))

    # df=pd.DataFrame(a.isna().sum().sort_values(ascending=False))

    # # 直接用fillna来填,可行, 但还要填drivers!!!
    # # 找rmse最低值 对应的来开始填补

    # # 一
    # b=a.loc[a['LE_Gap_filled'] > -9999, ['LE_Gap_filled','Drivers','RMSE']]

    # a['Drivers']=a.loc[a['LE_Gap_filled'] == np.nan, ['Drivers']]
    # a['Drivers'].fillna( b['Drivers'] ,inplace = True ) # 自立门户 新建第一个模型的Drivers
    # print(a['Drivers'].describe())

    # a['RMSE']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE']]
    # a['RMSE'].fillna( b['RMSE'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE'].describe())

    # b=a.loc[a['LE_Gap_filled.1'] > -9999, ['LE_Gap_filled.1', 'Drivers.1', 'RMSE.1']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.1']=a.loc[a['LE_Gap_filled.1'] == np.nan, ['Drivers.1']]
    # a['Drivers.1'].fillna( b['Drivers.1'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.1'].describe())

    # a['RMSE.1']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.1']]
    # a['RMSE.1'].fillna( b['RMSE.1'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.1'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.1'], inplace=True) # LE Update
    # df1=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df1)

    # a['Drivers'].fillna(a['Drivers.1'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.1'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


    # # 二
    # b=a.loc[a['LE_Gap_filled.2'] > -9999, ['LE_Gap_filled.2', 'Drivers.2', 'RMSE.2']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.2']=a.loc[a['LE_Gap_filled.2'] == np.nan, ['Drivers.2']]
    # a['Drivers.2'].fillna( b['Drivers.2'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.2'].describe())

    # a['RMSE.2']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.2']]
    # a['RMSE.2'].fillna( b['RMSE.2'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.2'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.2'], inplace=True) # LE Update
    # df2=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df2)

    # a['Drivers'].fillna(a['Drivers.2'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.2'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


    # # 三
    # b=a.loc[a['LE_Gap_filled.3'] > -9999, ['LE_Gap_filled.3', 'Drivers.3', 'RMSE.3']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.3']=a.loc[a['LE_Gap_filled.3'] == np.nan, ['Drivers.3']]
    # a['Drivers.3'].fillna( b['Drivers.3'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.3'].describe())

    # a['RMSE.3']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.3']]
    # a['RMSE.3'].fillna( b['RMSE.3'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.3'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.3'], inplace=True) # LE Update
    # df3=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df3)

    # a['Drivers'].fillna(a['Drivers.3'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.3'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


    # # 四
    # b=a.loc[a['LE_Gap_filled.4'] > -9999, ['LE_Gap_filled.4', 'Drivers.4', 'RMSE.4']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.4']=a.loc[a['LE_Gap_filled.4'] == np.nan, ['Drivers.4']]
    # a['Drivers.4'].fillna( b['Drivers.4'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.4'].describe())

    # a['RMSE.4']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.4']]
    # a['RMSE.4'].fillna( b['RMSE.4'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.4'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.4'], inplace=True) # LE Update
    # df4=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df4)

    # a['Drivers'].fillna(a['Drivers.4'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.4'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


    # # 五
    # b=a.loc[a['LE_Gap_filled.5'] > -9999, ['LE_Gap_filled.5', 'Drivers.5', 'RMSE.5']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.5']=a.loc[a['LE_Gap_filled.5'] == np.nan, ['Drivers.5']]
    # a['Drivers.5'].fillna( b['Drivers.5'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.5'].describe())

    # a['RMSE.5']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.5']]
    # a['RMSE.5'].fillna( b['RMSE.5'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.5'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.5'], inplace=True) # LE Update
    # df5=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df5)

    # a['Drivers'].fillna(a['Drivers.5'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.5'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


    # # 六
    # b=a.loc[a['LE_Gap_filled.6'] > -9999, ['LE_Gap_filled.6', 'Drivers.6', 'RMSE.6']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.6']=a.loc[a['LE_Gap_filled.6'] == np.nan, ['Drivers.6']]
    # a['Drivers.6'].fillna( b['Drivers.6'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.6'].describe())

    # a['RMSE.6']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.6']]
    # a['RMSE.6'].fillna( b['RMSE.6'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.5'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.6'], inplace=True) # LE Update
    # df6=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df6)

    # a['Drivers'].fillna(a['Drivers.6'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.6'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


    # # 七
    # b=a.loc[a['LE_Gap_filled.7'] > -9999, ['LE_Gap_filled.7', 'Drivers.7', 'RMSE.7']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.7']=a.loc[a['LE_Gap_filled.7'] == np.nan, ['Drivers.7']]
    # a['Drivers.7'].fillna( b['Drivers.7'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.7'].describe())

    # a['RMSE.7']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.7']]
    # a['RMSE.7'].fillna( b['RMSE.7'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.7'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.7'], inplace=True) # LE Update
    # df7=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df7)

    # a['Drivers'].fillna(a['Drivers.7'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.7'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())

    # # 八
    # b=a.loc[a['LE_Gap_filled.8'] > -9999, ['LE_Gap_filled.8', 'Drivers.8', 'RMSE.8']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.8']=a.loc[a['LE_Gap_filled.8'] == np.nan, ['Drivers.8']]
    # a['Drivers.8'].fillna( b['Drivers.8'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.8'].describe())

    # a['RMSE.8']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.8']]
    # a['RMSE.8'].fillna( b['RMSE.8'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.8'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.8'], inplace=True) # LE Update
    # df8=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df8)

    # a['Drivers'].fillna(a['Drivers.8'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.8'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())
    
    
    # # 九
    # b=a.loc[a['LE_Gap_filled.9'] > -9999, ['LE_Gap_filled.9', 'Drivers.9', 'RMSE.9']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.9']=a.loc[a['LE_Gap_filled.9'] == np.nan, ['Drivers.9']]
    # a['Drivers.9'].fillna( b['Drivers.9'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.9'].describe())

    # a['RMSE.9']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.9']]
    # a['RMSE.9'].fillna( b['RMSE.9'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.9'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.9'], inplace=True) # LE Update
    # df8=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df8)

    # a['Drivers'].fillna(a['Drivers.9'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.9'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())





    # # 加一下a的时间

    # so=pd.read_csv(os.path.join(path1,s))
    # so=so[['TIMESTAMP_START' ,'TIMESTAMP_END','LE_F_MDS']]

    # print(a['TIMESTAMP_START'])

    # print(a.shape)

    # a['QC'] = np.nan
    # a.loc[a['LE_Gap_filled'] > -9999, 'QC'] = 1
    # a.loc[a['LE_Gap_filled'] == -9999 , 'QC'] = 0
    
    # a['LE_Gap_filled'].replace(np.nan,-8888,inplace=True) # 原本是空值的部分  由于变量缺失过多,压根儿补不了的部分 在原数据集中,QC为3,表示的是ERA的数据
    # a['LE_Gap_filled'].replace(-9999,np.nan,inplace=True) #       |          空值还有种原因是 因为变量组合的原因,没有补到那一块,所以仍旧空
    # a['LE_Gap_filled'].fillna(sole['LE_F_MDS'],inplace=True)#  最后依旧是空值     
     
    # a.loc[a['LE_Gap_filled'] == -8888 , 'QC'] = -9999

    
    # print(a.dropna().shape[0]/a.shape[0])
    
    # a=a[[ 'TIMESTAMP_END', 'LE_Gap_filled', 'QC',  'Drivers', 'RMSE']]
    
    # a= pd.merge(so,a,how='outer',on='TIMESTAMP_END')

 
    # a['LE_Gap_filled'].fillna(a['LE_F_MDS'],inplace=True)   
    # a['LE_Gap_filled'].replace(-8888,np.nan,inplace=True)    
    
    # a=a[['TIMESTAMP_START', 'TIMESTAMP_END', 'LE_Gap_filled', 'QC',  'Drivers', 'RMSE']]
    
    
    # a['SW_IN_F_MDS']=np.nan
    # a['NETRAD']=np.nan
    # a['G_F_MDS']=np.nan
    # a['TA_F_MDS']=np.nan
    # a['RH']=np.nan
    # a['WD']=np.nan 
    # a['WS']=np.nan 
    
    # a['PA_F']=np.nan
    # a['VPD_F_MDS']=np.nan
    # a['NDVI']=np.nan
    # a['TS_F_MDS_1']=np.nan
    # a['SWC_F_MDS_1']=np.nan
    # a['TA_F_MDS']=np.nan
    
    # a['Drivers'].replace(np.nan,-9999,inplace=True)

    
    # b=a.loc[a['Drivers']!=-9999]
    # # print(b)
    
    # for i in b.columns[6:]:
        
    #     # print(i)
        
    #     c=b[b['Drivers'].str.contains(i)]

    #     c[i].replace(np.nan,'+',inplace=True)
        
    #     a[i]=c[i]
        
    # b=a.count(axis=1)-6
    # b=pd.DataFrame(b)
    
    # a['n_drivers']=b
    
    # a['n_drivers'].replace([-1,-2,-3],np.nan,inplace=True)
    
    # a['Drivers'].replace(-9999,np.nan,inplace=True)



    # # a.to_csv(os.path.join(path,sole+'.csv'),index = False)

    
    # a.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\FILLED',str(s.split('_',6)[1]) +'.csv'),index = False)
             



#  创造空列
# df["Empty_1"] = ""
# df["Empty_2"] = np.nan
# df['Empty_3'] = pd.Series() 
    
















你可能感兴趣的:(机器学习,python,sklearn)