下面是python cart算法的简单实现,可以直接复制下面代码进行运行,即可查看模型的拟合曲线
import matplotlib.pyplot as plt import numpy as np from sklearn.tree import DecisionTreeRegressor def plotfigure(X,X_test,y,yp): plt.figure() plt.scatter(X,y,c="k",label="data") #scatter must be 1D (cannot above 2D, for example (200,1)) plt.plot(X_test,yp,c="r",label="max_depth=5",linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show() x = np.linspace(-5,5,200) siny = np.sin(x) X = np.mat(x).T y = siny+np.random.rand(1,len(siny))*1.5 y= y.tolist()[0] clf = DecisionTreeRegressor(max_depth=5,min_samples_leaf=10,min_samples_split=10) clf.fit(X,y) X_test = np.arange(-5.0,5.0,0.05)[:,np.newaxis] yp = clf.predict(X_test) plotfigure(np.array(X)[:,0],X_test,y,yp) print(X.shape,type(X))