基因型与表型的交互作用如何分析,多元回归来搞定

欢迎关注”生信修炼手册”!

回归分析最为关联分析中最长使用的一种手段,除了可以进行协变量的校正,还可以分析各种因素间的交互作用,比如SNP与表型,SNP与环境之间的交互。具体是如何实现的呢?

以线性回归为例,回归方程如下

研究的是因变量y和两个自变量x1,x2之间的线性关系,这样的模型我们称之为相加模型additive model, 该模型假设x1和x2两个自变量是相互独立的,是没有交互作用的。然而在实际情况中,这样的假设不一定成立,很多时候我们需要考虑自变量之间的相互作用。

在回归方程中,通过引入相乘项来表示变量间的交互作用,以上述表达式为例,引入x1和x2的交互作用后,对应的方程如下

这样的模型称之为interaction model,其中x1和x2的相乘项表示两个变量间的交互作用。自变量间的交互作用不局限于两个变量,也可以是多个变量之间,3个变量间交互作用的方程如下

考虑到3个及以上变量交互作用过于复杂,很难解释。在实际分析中,通常只分析两个变量间的交互作用。对应的R语言代码如下
基因型与表型的交互作用如何分析,多元回归来搞定_第1张图片

在结果中可以看到 education:prestige对应的p值是显著的,说明二者确实存在了交互作用。 在plink中分析交互作用更加的简单,只需要添加两个参数即可,以逻辑回归为例,用法如下

plink --bfile sample --logistic interaction   --covar phenotype.txt -- --allow-no-sex --ci 0.95 --out out

第一个参数是covar, 协变量的意思,可以将样本对应的表型等信息作为协变量,第二个参数是interaction, 表示分析表型与基因型之间的交互作用。当有多个协变量时,可以再结合parameters参数来指定分析哪些变量间的交互作用。

输出结果示意如下

ADD表示基因型,默认是加性模型,agegender这两个表型作为协变量,和基因型一起作为回归方程中的自变量,而ADDxage和ADDxgender则对应表型与基因型的交互作用。

在多元回归分析中两个变量间的交互作用,可以通过二者的相乘项来表示,应用到关联分析中,可以用于分析基因型与表型之间的交互作用。

·end·

—如果喜欢,快分享给你的朋友们吧—

往期精彩

  • 自己动手进行逻辑回归,你也可以!

  • 逻辑回归or线性回归,傻傻分不清楚

  • 没想到你是这个样子的置信区间

  • 线性回归的这些细节,你都搞明白了吗?

  • 3分钟掌握曼哈顿图的绘制

  • 一文搞懂Q-Q plot图的含义

  • Cochran-Mantel-Haenszel检验在关联分析中的应用

  • plink中case/control关联分析细节解析

  • odd ratio值在关联分析中的含义

  • Cochran-Armitage趋势检验在关联分析中的应用

  基因型填充

  • GWAS中的genotype imputation简介

  • 基因型填充中的phasing究竟是什么

  • 基因型填充前的质控条件简介

  • 使用shapeit进行单倍型分析

  • gtool:操作genotype data的利器

  • 使用IMPUTE2进行基因型填充

  • 使用Beagle进行基因型填充

  • 使用Minimac进行基因型填充

  • 使用Eagle2进行单倍型分析

  • X染色体的基因型填充

  • 文献解读|不同基因型填充软件性能的比较

  • Haplotype Reference Consortium:最大规模的单倍型数据库

  • Michigan Imputation Server:基因型填充的在线工具

  CNV分析

  • aCGH芯片简介

  • aCGH芯片分析简介

  • 基于SNP芯片进行CNV分析中的基本知识点

  • PennCNV:利用SNP芯片检测CNV

  • DGV:人类基因组结构变异数据库

  • dbvar:染色体结构变异数据库

  • DGVa:染色体结构变异数据库

  • CNVD:疾病相关的CNV数据库

  • DECIPHER:疾病相关的CNV数据库

  • 全基因组数据CNV分析简介

  • 使用CNVnator进行CNV检测

  • 使用lumpy进行CNV检测

  • CNVnator原理简介

  • WES的CNV分析简介

  • XHMM分析原理简介

  • 使用conifer进行WES的CNV分析

  • 使用EXCAVATOR2检测WES的CNV

  • 靶向测序的CNV分析简介

  • 使用CNVkit进行CNV分析

  • DECoN:最高分辨率的CNV检测工具

  TCGA

  • TCGA数据库简介

  • 使用GDC在线查看TCGA数据

  • 使用gdc-client批量下载TCGA数据

  • 一文搞懂TCGA中的分析结果如何来

  • 通过GDC Legacy Archive下载TCGA原始数据

  • 使用GDC API查看和下载TCGA的数据

  • 使用GDC下载TCGA肿瘤患者的临床信息

  • 使用TCGAbiolinks下载TCGA的数据

  • 使用TCGAbiolinks进行生存分析

  • 使用TCGAbiolinks分析TCGA中的表达谱数据

  • 使用TCGAbiolinks进行甲基化和转录组数据的联合分析

  • Broad GDAC:TCGA数据分析中心

  • 使用cBioPortal查看TCGA肿瘤数据

  • UCSC  Xena:癌症基因组学数据分析平台

  • GEPIA:TCGA和GTEx表达谱数据分析平台

  • TANRIC:肿瘤相关lncRNA数据库

  • SurvNet:基于网络的肿瘤biomarker基因查找算法

  • TCPA:肿瘤RPPA蛋白芯片数据中心

  • TCGA Copy Number Portal:肿瘤拷贝数变异数据中心

  生存分析

  • 生存分析详细解读

  • 用R语言进行KM生存分析

  • 使用OncoLnc进行TCGA生存分析

  • 用R语言进行Cox回归生存分析

  • 使用kmplot在线进行生存分析

  肿瘤数据库

  • ICGC:国际肿瘤基因组协会简介

  • HPA:人类蛋白图谱数据库

  • Oncomine:肿瘤芯片数据库

  • ONGene:基于文献检索的肿瘤基因数据库

  • oncomirdb:肿瘤相关的miRNA数据库

  • TSGene:肿瘤抑癌基因数据库

  • NCG:肿瘤驱动基因数据库

  • mutagene:肿瘤突变频谱数据库

  • CCLE:肿瘤细胞系百科全书

  • mSignatureDB:肿瘤突变特征数据库

  • GTEx:基因型和基因表达量关联数据库

  肿瘤免疫和新抗原

  • Cancer-Immunity Cycle:肿瘤免疫循环简介

  • TMB:肿瘤突变负荷简介

  • 肿瘤微环境:Tumor microenvironment (TME)简介

  • 肿瘤浸润免疫细胞量化分析简介

  • 使用EPIC预测肿瘤微环境中免疫细胞构成

  • TIMER:肿瘤浸润免疫细胞分析的综合网站

  • quanTIseq:肿瘤浸润免疫细胞定量分析

  • The Cancer Immunome Atlas:肿瘤免疫图谱数据库

  • 肿瘤新抗原简介

  • TSNAdb:肿瘤新抗原数据库

  • 使用NetMHCpan进行肿瘤新抗原预测分析

  Hi-C数据分析

  • chromosome-territories:染色质疆域简介

  • chromosome conformation capture:染色质构象捕获技术

  • 3C的衍生技术简介

  • 解密Hi-C数据分析中的分辨率

  • A/B compartment:染色质区室简介

  • TAD:拓扑关联结构域简介

  • chromatin loops:染色质环简介

  • Promoter Capture Hi-C:研究启动子区染色质互作的利器

  • 使用HiCUP进行Hi-C数据预处理

  • Juicer:Hi-C数据处理分析的利器

  • Juicer软件的安装详解

  • Juicebox:Hi-C数据可视化利器

  • Juicer实战详解

  • HiC-Pro:灵活的Hi-C数据处理软件

  • HiC-Pro实战详解

  • 3D Genome Browser:Hi-C数据可视化工具

  • HiCPlotter:Hi-C数据可视化工具

  • 3CDB:基于3C技术的染色质互作信息数据库

  • 3DIV:染色质空间互作数据库

  • 4DGenome:染色质相互作用数据库

  • 4D nucleome project:染色质三维结构研究必不可少的参考项目

  • 3dsnp:SNP在染色质环介导的调控网络中的分布数据库

  • iRegNet3D:疾病相关SNP位点在三维调控网络中的作用

  • 使用WashU Epigenome Browser可视化hi-c数据

  • HiGlass:高度定制的Hi-C数据可视化应用

  • Hi-C Data Browser:Hi-C数据浏览器

  • 使用FitHiC评估染色质交互作用的显著性

  • 使用TADbit识别拓扑关联结构域

  • 使用pyGenomeTracks可视化hi-c数据

  • hi-c辅助基因组组装简介

  • 文献解读|使用hi-C数据辅助埃及伊蚊基因组的组装

  chip_seq数据分析

  • Chip-seq简介

  • chip_seq质量评估之计算样本间的相关性

  • chip_seq质量评估之查看抗体富集效果

  • chip_seq质量评估之PCA分析

  • chip_seq质量评估之coverage分析

  • chip_seq质量评估之FRiP Score

  • chip_seq质量评估之cross correlation

  • chip_seq质量评估之文库复杂度

  • depth, bedgraph, bigwig之间的联系与区别

  • bigwig归一化方式详解

  • 使用igvtools可视化测序深度分布

  • 使用UCSC基因组浏览器可视化测序深度分布数据

  • 使用deeptools查看reads分布特征

  • 使用phantompeakqualtools进行cross correlation分析

  • blacklist regions:NGS测序数据中的黑名单

  • MACS:使用最广泛的peak calling软件之一

  • MACS2 peak calling实战

  • 使用SICER进行peak calling

  • 使用HOMER进行peak calling

  • peak注释信息揭秘

  • PAVIS:对peak区域进行基因注释的在线工具

  • 使用UPORA对peak进行注释

  • 使用GREAT对peak进行功能注释

  • annoPeakR:一个peak注释的在线工具

  • 使用ChIPpeakAnno进行peak注释

  • 使用ChIPseeker进行peak注释

  • 使用PeakAnalyzer进行peak注释

  • 使用homer进行peak注释

  • 利用bedtools预测chip_seq数据的靶基因

  motif

  • 关于motif你需要知道的事

  • 详解motif的PFM矩阵

  • 详解motif的PWM矩阵

  • 使用WebLogo可视化motif

  • 使用seqLogo可视化motif

  • 使用ggseqlogo可视化motif

  • MEME:motif分析的综合性工具

  • 使用MEME挖掘序列中的de novo motif

  • 使用DREME挖掘序列中的de novo motif

  • 使用MEME-ChIP挖掘序列中的de novo motif

  chip_seq数据库

  • ENCODE project项目简介

  • FactorBook:人和小鼠转录因子chip_seq数据库

  • ReMap:人类Chip-seq数据大全

  • IHEC:国际人类表观基因组学联盟

  • Epifactors:表观因子数据库

  • GTRD:最全面的人和小鼠转录因子chip_seq数据库

  • ChIP-Atlas:基于公共chip_seq数据进行分析挖掘

  • Cistrome DB:人和小鼠的chip_seq数据库

  • chipBase:转录因子调控网络数据

  • unibind:human转录因子结合位点数据库

  • chip_seq在增强子研究中的应用

  • DENdb:human增强子数据库

  • VISTA:人和小鼠的增强子数据库

  • EnhancerAtlas:人和小鼠的增强子数据库

  • FANTOM5:人类增强子数据库

  • TiED:人类组织特异性增强子数据库

  • HEDD:增强子疾病相关数据库

  • HACER:human增强子数据库

  • SEdb:超级增强子数据库简介

  • dbSUPER:人和小鼠中的超级增强子数据库

  • dbCoRC:核心转录因子数据库

  • 使用ROSE鉴定超级增强子

  18年文章目录

  • 2018年推文合集

扫描下方二维码,关注我们,解锁更多精彩内容!

生物信息入门

只差这一个

公众号

你可能感兴趣的:(可视化,数据分析,人工智能,大数据,数据挖掘)