● 语言环境:Python3.8
● 编译器:pycharm
● 深度学习环境:Pytorch
● 数据来源:链接: https://pan.baidu.com/s/1SEfd8mvWt7BpzmWOeaIRkQ 提取码: gdie
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import torch.utils.data
from model import *
from handle import *
# 一、数据处理 headle.py
# 1、加载数据
path = './data/'
headle = Handle(path)
total_data = headle.handle()
# 2、划分数据集
train_size = int(0.8 * len(total_data)) # 80%用来做训练数据
test_size = len(total_data) - train_size # 20%用来做测试数据
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) # 按比例随机划分数据
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
# 二、网络构建 model().__init__ model.forward()
# 三、模型训练 model.train()
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
# 1、设置模型参数
loss_fn = nn.CrossEntropyLoss() # 损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)
# 2、训练函数 model.train1()
# 3、测试函数 model.test1()
# 4、模型训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = model.train1(train_dl, model, loss_fn, opt, device)
model.eval()
epoch_test_acc, epoch_test_loss = model.test(test_dl, model, loss_fn, device)
train_loss.append(epoch_train_loss)
train_acc.append(epoch_train_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')
# 用测试数据做预测
test_pred = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True)
acc = 0
for X, y in test_dl:
pred = model(X)
# classNames = ['cloudy', 'rain', 'shine', 'sunrise']
# index = pred.argmax(1)
# predict = classNames[index]
# r_index = y.item()
# print('predict:' + str(predict))
# print('real:' + str(classNames[r_index]))
# print(' ')
acc += (pred.argmax(1) == y).type(torch.float).sum().item()
size = len(test_dl.dataset)
print(acc / size)
# 保存模型
torch.save(model.state_dict(), './model/model1.pkl')
# 四、结果可视化
# 隐藏警告
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率
epochs_range = range(epochs)
plt.figure(figsize=(20, 5))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
# -*- coding: utf-8 -*-
import pathlib
import torchvision.transforms as transforms
from torchvision import transforms, datasets
from PIL import Image
import numpy as np
class Handle():
def __init__(self, path):
self.path = path
def handle(self):
data_dir = pathlib.Path(self.path)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print("数据类别:" + str(classNames))
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
data = datasets.ImageFolder(self.path, transform=train_transforms)
return data
def single_handle(self):
img = Image.open(self.path)
# 转为numpy数组
npy_img = np.array(img)
print(npy_img.shape)
transforms1 = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor() # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
])
# 转为tensor
img = transforms1(img)
print(img.shape)
return img
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
classNames = 4
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12) # 积层之后总会添加BatchNorm2d进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定; 传入的参数为特征的维度
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2, 2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24 * 50 * 50, classNames)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24 * 50 * 50) # 维度进行变换
x = self.fc1(x)
return x
def train1(self, dataloader, model, loss_fn, optimizer, device):
size = len(dataloader.dataset) # 训练数据大小
num_batch = len(dataloader) # 批次数量
train_acc, train_loss = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X) # 前向传播
loss = loss_fn(pred, y) # 求loss
# 反向传播
optimizer.zero_grad() # 梯度属性归零
loss.backward() # 反向传播
optimizer.step() # 自动更新参数
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() # 预测正确结果的个数
train_loss += loss.item()
train_acc /= size
train_loss /= num_batch
return train_acc, train_loss
def test(self, dataloader, model, loss_fn, device):
size = len(dataloader.dataset) # 测试数据集大小
num_batch = len(dataloader) # 批次书
test_loss, test_acc = 0, 0
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batch
return test_acc, test_loss
通过如下代码,加载模型后进行预测时,发现batch_size=1的时候准确率很低,batch_size设置越高预测准确率越高,直到设置成和训练时候一样32,准确率才正常。(目的是想通过一张图片来预测)
# -*- coding: utf-8 -*-
from model import *
from handle import *
# 加载模型
model = Network_bn()
model.load_state_dict(torch.load('./model/model1.pkl'))
# 本地加载图片并处理
img_data = Handle('./test/test3/').handle()
p_data = torch.utils.data.DataLoader(img_data, batch_size=1, shuffle=True)
acc = 0
# 预测结果
for X, y in p_data:
pred = model(X)
classNames = ['cloudy', 'rain', 'shine', 'sunrise']
index = pred.argmax(1) - 1
predict = classNames[index]
r_index = y.item()
print('predict:' + str(predict))
print('real:' + str(classNames[r_index]))
print(' ')
acc += (pred.argmax(1) == y).type(torch.float).item()
print(acc/len(p_data))
在预测前加上model.eval()把问题解决了。
model.eval()
不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化,pytorch框架会自动把BN和Dropout固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层影响结果。