Pytorch中的KL散度计算函数

Pytorch中的KL散度计算函数_第1张图片

如图所示,左图为p(x)和q(x)的分布(最简单的情况,两个的函数基本一样,只是q(x)的均值在移动),p(x)固定不动,移动q(x),和q(x)越近KL散度越小,反之亦然

import torch.nn as nn
import torch
import torch.nn.functional as F
 
if __name__ == '__main__':
    x_o = torch.Tensor([[1, 2], [3, 4]])
    y_o = torch.Tensor([[0.1, 0.2], [0.3, 0.4]])
 
    x = F.log_softmax(x_o, dim=-1)
 
    y = F.softmax(y_o, dim=-1)
    criterion = nn.KLDivLoss()
    klloss = criterion(x, y)
    klloss_same = criterion(x, x)
 
    print('klloss', klloss)
    print('klloss_same', klloss_same)
 
    kl = F.kl_div(x, y, reduction='sum')
 
    print('kl', kl)
 
    kl2 = F.kl_div(x, y, reduction='mean')
 
    print('kl2', kl2)

klloss tensor(0.0482) klloss_same tensor(0.) kl tensor(0.1928) kl2 tensor(0.0482) 

参考资料

(292条消息) Pytorch中的KL散度_曼车斯基的博客-CSDN博客

KL散度理解以及使用pytorch计算KL散度 - 知乎 (zhihu.com)

你可能感兴趣的:(#,深度学习Pytorch框架,深度学习,人工智能)