【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)

一、问题提出

李沐老师《动手学深度学习》这本书中,3.6节中涉及到softmax回归的从零开始实现,其中有一个绘制动图的程序,展示的效果很好。

我们看一下相应的代码:

class Animator:
    def __init__(self, xlabel = None, ylabel = None, legend = None, xlim = None, ylim = None, xscale = 'linear', yscale = 'linear',\
        fmts = ('-', 'm-', 'g-', 'r:'), nrows = 1, ncols = 1, figsize = (10, 6)):
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize = figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        self.config_axes = lambda : d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    
    def add(self, x, y):
        if not hasattr(y, '__len__'):
            y = [y]
        n = len(y)
        if not hasattr(x, '__len__'):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)


def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9], legend=['train_loss', 'train_acc', 'test_acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc, ))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_loss <= 1 and train_acc > 0.7, train_loss
    assert train_loss <= 1 and test_acc > 0.7, test_acc


lr = 0.1
def updater(batch_size):
    return d2l.sgd([w, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

但是源代码是在Jupyter中编写的,VSCode中无法正常显示。

<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>
<Figure size 1500x900 with 1 Axes>

二、尝试解决办法

2.1 尝试解决办法1:

需要在train_ch3(net,train_iter,test_iter,loss,num_epochs,updater)函数中添加d2l.plt.show(),将会显示最终结果:
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第1张图片

这里无法显示动图,笔者尝试在循环中添加此函数,仍无法显示动图,并且只显示第一轮训练的结果,另外,如果显示的窗口不关掉,训练将会被中止。

这种方法行不通。

2.2 最终的解决方法

修改 d2l.Animator 类的部分代码:

  1. 在 Animator 类中的 add() 方法中添加两行代码:
plt.draw()
plt.pause(0.001)

【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第2张图片

  1. 在 Animator 添加 show() 方法:
def show(self):
    display.display(self.fig)

【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第3张图片

三、最终的运行动图展示

此时我们的运行结果如下:
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第4张图片
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第5张图片
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第6张图片
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第7张图片
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第8张图片
【动手学深度学习】softmax回归在实现过程中,无法在VSCode中绘制动图的解决办法(含源代码)_第9张图片

四、源代码

class Animator:
    def __init__(self, xlabel = None, ylabel = None, legend = None, xlim = None, ylim = None, xscale = 'linear', yscale = 'linear',\
        fmts = ('-', 'm-', 'g-', 'r:'), nrows = 1, ncols = 1, figsize = (10, 6)):
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize = figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        self.config_axes = lambda : d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    
    def add(self, x, y):
        if not hasattr(y, '__len__'):
            y = [y]
        n = len(y)
        if not hasattr(x, '__len__'):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        plt.draw()
        plt.pause(0.001)
        display.display(self.fig)
        display.clear_output(wait=True)
    

    def show(self):
        display.display(self.fig)


def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9], legend=['train_loss', 'train_acc', 'test_acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc, ))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_loss <= 1 and train_acc > 0.7, train_loss
    assert train_loss <= 1 and test_acc > 0.7, test_acc
    # animator.show()


lr = 0.1
def updater(batch_size):
    return d2l.sgd([w, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

你可能感兴趣的:(深度学习笔记,深度学习,人工智能,动图演示,PyTorch)