【计算机视觉】相机标定实验

1.相机标定的原理

1.1 简介

在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立摄像机成像的几何模型,这些几何模型参数就是摄像机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定。简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵P PP的过程。
无论是在图像测量或者机器视觉应用中,摄像机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响摄像机工作产生结果的准确性。因此,做好摄像机标定是做好后续工作的前提,是提高标定精度是科研工作的重点所在。其标定的目的就是为了相机内参、外参、畸变参数

1.2 世界坐标系

世界坐标系:用户定义的三维世界的坐标系,为了描述目标物在真实世界里的位置而被引入。

相机坐标系:在相机上建立的坐标系,为了从相机的角度描述物体位置而定义,作为沟通世界坐标系和图像/像素坐标系的中间一环。

图像坐标系:为了描述成像过程中物体从相机坐标系到图像坐标系的投影透射关系而引入,方便进一步得到像素坐标系下的坐标。

一般来说,标定的过程分为两个部分:
第一步是从世界坐标系转换为相机坐标系,这一步是三维点到三维点的转换,包括 R RR,t tt(相机外参)等参数;

【计算机视觉】相机标定实验_第1张图片
 

第二步是从相机坐标系转为图像坐标系,这一步是三维点到二维点的转换,包括 K (相机内参)等参数;

 【计算机视觉】相机标定实验_第2张图片

  • 同步标定内部参数和外部参数,一般包括两种策略s:
    光学标定: 利用已知的几何信息(如定长棋盘格)实现参数求解。
    自标定: 在静态场景中利用 structure from motion估算参数

1.3 畸变参数

  • 同步标定内部参数和外部参数,一般包括两种策略s:
    光学标定: 利用已知的几何信息(如定长棋盘格)实现参数求解。
    自标定: 在静态场景中利用 structure from motion估算参数【计算机视觉】相机标定实验_第3张图片

径向畸变可以用如下公式修正

【计算机视觉】相机标定实验_第4张图片 

(2)切向畸变(薄透镜畸变和离心畸变):
切向畸变是由于透镜制造上的缺陷使得透镜本身与图像平面不平行而产生的。
切向畸变可以用如下公式修正:

【计算机视觉】相机标定实验_第5张图片 


 

2.相机标定的具体实现

2.1相机标定常用方法

1.传统相机标定

优点:适用任意摄像机模型,标定精度高;
不足:需标定参照物,某些应用中难以实现;
传统相机标定法需要使用尺寸已知的标定物,通过建立标定物上坐标已知的点与其图像点之间的对应,利用一定的算法获得相机模型的内外参数。根据标定物的不同可分为三维标定物和平面型标定物。三维标定物可由单幅图像进行标定,标定精度较高,但高精密三维标定物的加工和维护较困难。平面型标定物比三维标定物制作简单,精度易保证,但标定时必须采用两幅或两幅以上的图像。传统相机标定法在标定过程中始终需要标定物,且标定物的制作精度会影响标定结果。同时有些场合不适合放置标定物也限制了传统相机标定法的应用
 

2.主动视觉相机标定

优点:算法简单,往往能够获得线性解,故鲁棒性较高;
缺点:系统的成本高、实验设备昂贵、实验条件要求高,而且不适合于运动参数位置或无法控制的场合。
基于主动视觉的相机标定法是指已知相机的某些运动信息对相机进行标定。该方法不需要标定物,但需要控制相机做某些特殊运动,利用这种运动的特殊性可以计算出相机内部参数。
 

3.相机自标定

优点:自标定方法灵活性强,可对相机进行在线定标;
缺点:它是基于绝对二次曲线或曲面的方法,其算法鲁棒性差。
目前出现的自标定算法中主要是利用相机运动的约束。相机的运动约束条件太强,因此使得其在实际中并不实用。利用场景约束主要是利用场景中的一些平行或者正交的信息。其中空间平行线在相机图像平面上的交点被称为消失点,它是射影几何中一个非常重要的特征,所以很多学者研究了基于消失点的相机自标定方法
 

5.基于opencv的相机标定

import cv2
import numpy as np
import glob

# 找棋盘格角点
# 阈值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# 棋盘格模板规格
# 内角点个数,内角点是和其他格子连着的点
w = 9
h = 6
# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w * h, 3), np.float32)
objp[:, :2] = np.mgrid[0:w, 0:h].T.reshape(-1, 2)
# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = []  # 在世界坐标系中的三维点
imgpoints = []  # 在图像平面的二维点

images = glob.glob('image/*.jpg')
for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 找到棋盘格角点
    # 棋盘图像(8位灰度或彩色图像)  棋盘尺寸  存放角点的位置
    ret, corners = cv2.findChessboardCorners(gray, (w, h), None)
    # 如果找到足够点对,将其存储起来
    if ret == True:
        # 角点精确检测
        # 输入图像 角点初始坐标 搜索窗口为2*winsize+1 死区 求角点的迭代终止条件
        cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
        objpoints.append(objp)
        imgpoints.append(corners)
        # 将角点在图像上显示
        cv2.drawChessboardCorners(img, (w, h), corners, ret)
        cv2.imshow('findCorners', img)
        cv2.waitKey(1000)
cv2.destroyAllWindows()
# 标定、去畸变
# 输入:世界坐标系里的位置 像素坐标 图像的像素尺寸大小 3*3矩阵,相机内参数矩阵 畸变矩阵
# 输出:标定结果 相机的内参数矩阵 畸变系数 旋转矩阵 平移向量
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# mtx:内参数矩阵
# dist:畸变系数
# rvecs:旋转向量 (外参数)
# tvecs :平移向量 (外参数)
print(("ret:"), ret)
print(("mtx:\n"), mtx)  # 内参数矩阵
print(("dist:\n"), dist)  # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print(("rvecs:\n"), rvecs)  # 旋转向量  # 外参数
print(("tvecs:\n"), tvecs)  # 平移向量  # 外参数
# 去畸变
img2 = cv2.imread('image/6.jpg')
h, w = img2.shape[:2]
# 我们已经得到了相机内参和畸变系数,在将图像去畸变之前,
# 我们还可以使用cv.getOptimalNewCameraMatrix()优化内参数和畸变系数,
# 通过设定自由自由比例因子alpha。当alpha设为0的时候,
# 将会返回一个剪裁过的将去畸变后不想要的像素去掉的内参数和畸变系数;
# 当alpha设为1的时候,将会返回一个包含额外黑色像素点的内参数和畸变系数,并返回一个ROI用于将其剪裁掉
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 0, (w, h))  # 自由比例参数

dst = cv2.undistort(img2, mtx, dist, None, newcameramtx)
# 根据前面ROI区域裁剪图片
x, y, w, h = roi
dst = dst[y:y + h, x:x + w]
cv2.imwrite('image/6_calibresult.jpg', dst)

# 反投影误差
# 通过反投影误差,我们可以来评估结果的好坏。越接近0,说明结果越理想。
# 通过之前计算的内参数矩阵、畸变系数、旋转矩阵和平移向量,使用cv2.projectPoints()计算三维点到二维图像的投影,
# 然后计算反投影得到的点与图像上检测到的点的误差,最后计算一个对于所有标定图像的平均误差,这个值就是反投影误差。
total_error = 0
for i in range(len(objpoints)):
    imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
    error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
    total_error += error
print(("total error: "), total_error / len(objpoints))

标定结果

【计算机视觉】相机标定实验_第6张图片

 

你可能感兴趣的:(计算机视觉,人工智能)