解:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
y 2 = x 3 + 2 x + 1 y^2 = x^3+2x+1 y2=x3+2x+1 | 1 | 4 | 6 | 6 | 3 | 3 | 5 |
QR | Y | Y | N | N | N | N | N |
Y | 1,6 | 2,5 |
所有在 E 7 ( 2 , 1 ) E_7(2,1) E7(2,1) 上的点有:(0,1)(0,6)(1,2)(1,5)
解: − - −P = (3,-5) = (3,-5 mod 7) = (3,2)
− - −Q = (2,-5) = (2,-5 mod 7) = (2,2)
− - −R = (5,0)
解;由题知,p = 11, a = 1, b = 7
令 ( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 3 , y 3 ) ∈ E (x_1,y_1) +(x_2,y_2) = (x_3,y_3) \in E (x1,y1)+(x2,y2)=(x3,y3)∈E
则有 x 3 = ( λ 2 − x 1 − x 2 x_3 = (\lambda^2-x_1-x_2 x3=(λ2−x1−x2) mod p
y 3 = ( λ ( x 1 − x 3 ) − y 1 y_3 =( \lambda(x_1-x_3)-y_1 y3=(λ(x1−x3)−y1) mod p
其中, λ = \lambda = λ= ( y 2 − y 1 x 2 − x 1 ) (\frac{y_2-y_1}{x_2-x_1}) (x2−x1y2−y1) mod p , x 1 ≠ x 2 x_1 \neq x_2 x1=x2
λ = \lambda = λ= ( 3 x 1 2 + a 2 y 1 ) (\frac{3x_1^2+a}{2y_1}) (2y13x12+a) mod p , x 1 = x 2 x_1 = x_2 x1=x2
(1)求 2G 的值:
∵ \because ∵ 2G = = = G + G
∴ \therefore ∴ λ = \lambda = λ= ( 3 x 1 2 + a 2 y 1 ) (\frac{3x_1^2+a}{2y_1}) (2y13x12+a) mod p = ( 27 + 1 4 ) =(\frac{27+1}{4}) =(427+1) mod 11 = 4
∴ \therefore ∴ x 3 = ( λ 2 − x 1 − x 2 x_3 = (\lambda^2-x_1-x_2 x3=(λ2−x1−x2) mod p = = = (49-6) mod 11 = = = 10
∴ \therefore ∴ y 3 = ( λ ( x 1 − x 3 ) − y 1 y_3 =( \lambda(x_1-x_3)-y_1 y3=(λ(x1−x3)−y1) mod p = = = [7 x (3-10) - 2] mod 11 = (7x4-2) mod 11 = 4
∴ \therefore ∴ 2G = = = (10,4)
(2)求 3G 的值:
∵ \because ∵ 3G = = = G + 2G
∴ \therefore ∴ λ = \lambda = λ= ( y 2 − y 1 x 2 − x 1 ) (\frac{y_2-y_1}{x_2-x_1}) (x2−x1y2−y1) mod p = ( 2 7 ) =(\frac{2}{7}) =(72) mod 11 = 5
∴ \therefore ∴ x 3 = ( λ 2 − x 1 − x 2 x_3 = (\lambda^2-x_1-x_2 x3=(λ2−x1−x2) mod p = = = (25-3-10) mod 11 = = = 1
∴ \therefore ∴ y 3 = ( λ ( x 1 − x 3 ) − y 1 y_3 =( \lambda(x_1-x_3)-y_1 y3=(λ(x1−x3)−y1) mod p = = = [5 x (3-1) - 2] mod 11 = 8
∴ \therefore ∴ 2G = = = (1,8)
其余几项的计算类同于此,计算结果如下:
G | 2G | 3G | 4G | 5G | 6G | 7G | 8G | 9G | 10G | 11G | 12G | 13G | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ \lambda λ | 7 | 5 | 8 | 1 | 6 | 4 | 2 | 4 | 6 | 1 | 8 | 5 | |
(3,2) | (10,4) | (1,8) | (5,4) | (4,8) | (7,7) | (6,8) | (6,3) | (7,4) | (4,3) | (5,7) | (1,3) | (10,7) |
可以应用几何学知识使椭圆曲线上的点形成一个加法群,
同时通过这些群操作,我们会更好的了解椭圆曲线的性质,并对其进行进一步的研究和应用
CINTA作业九:QR