ComSec作业五:椭圆曲线

文章目录

  • 前言
  • 一、求椭圆曲线上的点
  • 二、椭圆曲线上点的加法逆元
  • 三、椭圆曲线上点的加法运算
  • 总结


前言

ComSec作业五:椭圆曲线_第1张图片


一、求椭圆曲线上的点

示例:。

解:

X 0 1 2 3 4 5 6
y 2 = x 3 + 2 x + 1 y^2 = x^3+2x+1 y2=x3+2x+1 1 4 6 6 3 3 5
QR Y Y N N N N N
Y 1,6 2,5

所有在 E 7 ( 2 , 1 ) E_7(2,1) E7(2,1) 上的点有:(0,1)(0,6)(1,2)(1,5)


二、椭圆曲线上点的加法逆元

在这里插入图片描述

解: − - P = (3,-5) = (3,-5 mod 7) = (3,2)
     − - Q = (2,-5) = (2,-5 mod 7) = (2,2)
     − - R = (5,0)


三、椭圆曲线上点的加法运算

在这里插入图片描述

解;由题知,p = 11, a = 1, b = 7

     ( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 3 , y 3 ) ∈ E (x_1,y_1) +(x_2,y_2) = (x_3,y_3) \in E (x1,y1)+(x2,y2)=(x3,y3)E

    则有  x 3 = ( λ 2 − x 1 − x 2 x_3 = (\lambda^2-x_1-x_2 x3=(λ2x1x2)  mod  p
          y 3 = ( λ ( x 1 − x 3 ) − y 1 y_3 =( \lambda(x_1-x_3)-y_1 y3=(λ(x1x3)y1)  mod   p

    其中, λ = \lambda = λ= ( y 2 − y 1 x 2 − x 1 ) (\frac{y_2-y_1}{x_2-x_1}) (x2x1y2y1)  mod   p , x 1 ≠ x 2 x_1 \neq x_2 x1=x2

           λ = \lambda = λ= ( 3 x 1 2 + a 2 y 1 ) (\frac{3x_1^2+a}{2y_1}) (2y13x12+a) mod   p , x 1 = x 2 x_1 = x_2 x1=x2


(1)求 2G 的值:
     ∵ \because 2G = = = G + G

     ∴ \therefore λ = \lambda = λ= ( 3 x 1 2 + a 2 y 1 ) (\frac{3x_1^2+a}{2y_1}) (2y13x12+a)  mod   p = ( 27 + 1 4 ) =(\frac{27+1}{4}) =(427+1) mod 11 = 4

     ∴ \therefore x 3 = ( λ 2 − x 1 − x 2 x_3 = (\lambda^2-x_1-x_2 x3=(λ2x1x2)  mod  p = = = (49-6) mod 11 = = = 10
     ∴ \therefore y 3 = ( λ ( x 1 − x 3 ) − y 1 y_3 =( \lambda(x_1-x_3)-y_1 y3=(λ(x1x3)y1)  mod   p = = = [7 x (3-10) - 2] mod 11 = (7x4-2) mod 11 = 4
     ∴ \therefore 2G = = = (10,4)


(2)求 3G 的值:
     ∵ \because 3G = = = G + 2G

     ∴ \therefore λ = \lambda = λ= ( y 2 − y 1 x 2 − x 1 ) (\frac{y_2-y_1}{x_2-x_1}) (x2x1y2y1)  mod   p = ( 2 7 ) =(\frac{2}{7}) =(72) mod 11 = 5

     ∴ \therefore x 3 = ( λ 2 − x 1 − x 2 x_3 = (\lambda^2-x_1-x_2 x3=(λ2x1x2)  mod  p = = = (25-3-10) mod 11 = = = 1
     ∴ \therefore y 3 = ( λ ( x 1 − x 3 ) − y 1 y_3 =( \lambda(x_1-x_3)-y_1 y3=(λ(x1x3)y1)  mod   p = = = [5 x (3-1) - 2] mod 11 = 8
     ∴ \therefore 2G = = = (1,8)

其余几项的计算类同于此,计算结果如下:

G 2G 3G 4G 5G 6G 7G 8G 9G 10G 11G 12G 13G
λ \lambda λ 7 5 8 1 6 4 2 4 6 1 8 5
(3,2) (10,4) (1,8) (5,4) (4,8) (7,7) (6,8) (6,3) (7,4) (4,3) (5,7) (1,3) (10,7)



总结

可以应用几何学知识使椭圆曲线上的点形成一个加法群,
同时通过这些群操作,我们会更好的了解椭圆曲线的性质,并对其进行进一步的研究和应用

CINTA作业九:QR

你可能感兴趣的:(网络安全,算法)