TensorFlow.js预测鸢尾花种类

 源码连接:TensorFlow.js实现鸢尾花种类预测-机器学习文档类资源-CSDN下载

一、加载IRIS数据集

创建index.html入口文件,跳转到script主文件。

在script.js文件夹中利用预先准备好的脚本生成鸢尾花数据集,包括训练集和验证集,并打印查看。

import {getIrisData, IRIS_CLASSES} from "./data.js";

window.onload = () => {
    // 加载数据
    const [xTrain, yTrain, xTest, yTest] = getIrisData(0.2);
    // 打印查看数据集
    xTrain.print();
    yTrain.print();
    xTest.print();
    yTest.print();
    // 打印鸢尾花种类类别
    console.log(IRIS_CLASSES);

}

getIrisData(0.2):获取数据集的时候,将20%的数据当成测试集,剩下的80%当成训练集。

xTrain:训练集的特征值。 

yTrain:训练集的目标值。

xTest:验证集的特征值。  

yTest:验证集的目标值。 

 可以在控制台查看到结果:

TensorFlow.js预测鸢尾花种类_第1张图片

其中特征矩阵里面的四个值分别表示:花萼的长度、花萼的宽度、花瓣的长度、花瓣的宽度。

目标值矩阵采用one-hot编码形式。

二、定义模型结构

初始化一个神经网络模型,为神经网络模型添加两层,配置模型的损失函数、激活函数、优化器、添加准确度度量。

// 定义网络模型
const model = tf.sequential();
// 添加隐藏层
model.add(tf.layers.dense({
    units: 10,
    inputShape: [xTrain.shape[1]],
    activation: 'relu'
}));

// 添加输出层 
model.add(tf.layers.dense({
    units: 3,
    activation: 'softmax'
}));

// 配置模型
model.compile({
    loss: "categoricalCrossentropy",
    optimizer: tf.train.adam(0.1),
    metrics: ['accuracy']
});

三、训练模型并可视化

训练结果需要等待,所以采用异步方式训练。

await model.fit(xTrain, yTrain,{
    epochs: 100,
    batchSize: 32,
    validationData: [xTest, yTest],
    callbacks: tfvis.show.fitCallbacks(
         {name: '训练效果'},
         ['loss', 'val_loss', 'acc', 'val_acc'],
         {callbacks: ['onEpochEnd']}
    )
}); 


训练结果:

 TensorFlow.js预测鸢尾花种类_第2张图片

 四、预测

编写前端界面输入待预测数据,使用训练好的模型进行预测,将输出的Tensor转成普通数据并显示。

在index.html中编写form表单,用来输入预测数据。

花萼长度:
花萼宽度:
花瓣长度:
花瓣宽度:

输入数据的顺序不能错,因为我们训练数据的顺序就是花萼长度、花萼宽度、花瓣长度、花瓣宽度。 

 在Script.js中编写predict预测函数。

 window.predict = (form) => {
        // 将表单获取的到数据转成Tensor
        const input = tf.tensor([[
            form.a.value * 1,
            form.b.value * 1,
            form.c.value * 1,
            form.d.value * 1,
        ]]);
        // 预测
        const pred = model.predict(input);
        alert(`预测结果:${IRIS_CLASSES[pred.argMax(1).dataSync(0)]}`)
    }

预测结果:gif动图有点模糊,可以自己动手试试看哦。

你可能感兴趣的:(人工智能,人工智能,tensorflow,vscode)