nodeJs
vscode或其他代码编辑器
Chrome浏览器或其他现代浏览器
tensorflow js 依赖,纯JS包,速度最慢
npm i @tensorflow/tfjs
【可选】构建C++底层包 版本控制4.0.0
npm i node-gyp [email protected]
【可选】tensorflow c++底层包,依赖C++底层包,速度比较快
npm i @tensorflow/tfjs-node
【可选】tensorflow gpu包,依赖C++底层包,速度最快,需要相关配置
npm i @tensorflow/tfjs-node-gpu
【可选】web应用打包工具 Parcel
npm install -g parcel-bundler
用法示例:parcel 路径/*.html
C:\Users\Administrator\Desktop\learnJS>parcel linear-regression/*
Server running at http://localhost:1234
√ Built in 1.24s.
其他:中学数学知识,基础前端、神经网络等预备知识
读文档永远是个好习惯
tensorflow API for JS
Google机械学习速成教程
import * as tf from '@tensorflow/tfjs';
//传统for循环
const input = [1, 2, 3, 4];
const w = [[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6], [4, 5, 6, 7]];
const output = [0, 0, 0, 0];
for(let i = 0; i< w.length; i++){
for(let j = 0;j< input.length; j++){
output[i] += input[j] * w[i][j];
}
}
console.log(output);
//使用tensorflow实现点乘
tf.tensor(w).dot(tf.tensor(input)).print();
npm i @tensorflow/tfjs-vis -S
import * as tfvis from '@tensorflow/tfjs-vis'
window.onload = () => {
const xs = [1, 2, 3, 4];
const ys = [1, 3, 5, 7];
tfvis.render.scatterplot(
{ name: '线性回归训练集' },
{ values: xs.map((x, i) => ({ x, y: ys[i] })) },
//设置x,y轴范围
{ xAxisDomain: [0, 5], yAxisDomain: [0, 8] }
);
};
import * as tf from '@tensorflow/tfjs';
//初始化连续模型
const model = tf.sequential();
model.add(tf.layers.dense( {units: 1, inputShape: [1]}))
model.compile({ loss: tf.losses.meanSquaredError });
model.compile({ loss: tf.losses.meanSquaredError, optimizer: tf.train.sgd(0.1)});
//package.json 加上下面的语句
"browserslist": ["last 1 Chrome version"]
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis'
window.onload = async () => {
const xs = [1, 2, 3, 4];
const ys = [1, 3, 5, 7];
tfvis.render.scatterplot(
{ name: '线性回归训练集' },
{ values: xs.map((x, i) => ({ x, y: ys[i] })) },
//设置x,y轴范围
{ xAxisDomain: [0, 5], yAxisDomain: [0, 8] }
);
//初始化连续模型
const model = tf.sequential();
model.add(tf.layers.dense({ units: 1, inputShape: [1] }))
model.compile({ loss: tf.losses.meanSquaredError, optimizer: tf.train.sgd(0.01)});//sgd 学习率
//转化为tensor变量
const inputs = tf.tensor(xs);
const labels = tf.tensor(ys);
await model.fit(inputs, labels, {
//小批量大小
batchSize: 4,
//迭代次数
epochs: 100,
//可视化
callbacks: tfvis.show.fitCallbacks(
{name:'训练过程'},
['loss']
)
});
};
//预测x为5的时候的y值
const output = model.predict(tf.tensor([5]));
alert('如果x为5,那么预测y为' + output.dataSync()[0]);
什么是归一化?
为何要归一化?
操作步骤
代码
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
window.onload = async () => {
const heights = [150, 160, 170];
const weights = [40, 50, 60];
//可视化
tfvis.render.scatterplot(
{ name: '身高体重训练数据' },
{ values: heights.map((x, i) => ({ x, y: weights[i] })) },
{
xAxisDomain: [140, 180],
yAxisDomain: [30, 70]
}
);
//此处用到的归一化算法 减去最小值,再除以差值
const inputs = tf.tensor(heights).sub(150).div(20);
const labels = tf.tensor(weights).sub(40).div(10);
//初始化连续模型
const model = tf.sequential();
model.add(tf.layers.dense({ units: 1, inputShape: [1] }))
model.compile({ loss: tf.losses.meanSquaredError, optimizer: tf.train.sgd(0.1) });//sgd 学习率
await model.fit(inputs, labels, {
//小批量大小
batchSize: 3,
//迭代次数
epochs: 200,
//可视化
callbacks: tfvis.show.fitCallbacks(
{ name: '训练过程' },
['loss']
)
});
//预测身高为180的时候的体重
const output = model.predict(tf.tensor([180]).sub(150).div(20));
//反归一化
alert('如果身高为180cm,那么预测体重为' + output.mul(10).add(40).dataSync()[0]) + 'kg';
};
生成数据集脚本代码
data.js
export function getData(numSamples) {
let points = [];
function genGauss(cx, cy, label) {
for (let i = 0; i < numSamples / 2; i++) {
let x = normalRandom(cx);
let y = normalRandom(cy);
points.push({ x, y, label });
}
}
//生成以(2,2)为中心label为1的 正态分布点
genGauss(2, 2, 1);
//生成以(-2,-2)为中心label为0的 正态分布点
genGauss(-2, -2, 0);
return points;
}
/**
* Samples from a normal distribution. Uses the seedrandom library as the
* random generator.
*
* @param mean The mean. Default is 0.
* @param variance The variance. Default is 1.
*/
function normalRandom(mean = 0, variance = 1) {
let v1, v2, s;
do {
v1 = 2 * Math.random() - 1;
v2 = 2 * Math.random() - 1;
s = v1 * v1 + v2 * v2;
} while (s > 1);
let result = Math.sqrt(-2 * Math.log(s) / s) * v1;
return mean + Math.sqrt(variance) * result;
}
主函数
script.js
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import { getData } from './data.js';
window.onload = async () => {
const data = getData(400);
console.log(data);
tfvis.render.scatterplot(
{ name: '逻辑回归训练数据' },
{
values: [
data.filter(p => p.label === 1),
data.filter(p => p.label === 0),
]
}
);
const model = tf.sequential();
model.add(tf.layers.dense({
units: 1,
inputShape: [2],
activation: 'sigmoid'
}));
model.compile({
loss: tf.losses.logLoss,
optimizer: tf.train.adam(0.1)
});
const inputs = tf.tensor(data.map(p => [p.x, p.y]));
const labels = tf.tensor(data.map(p => p.label));
await model.fit(inputs, labels, {
batchSize: 40,
epochs: 20,
callbacks: tfvis.show.fitCallbacks(
{ name: '训练效果' },
['loss']
)
});
window.predict = (form) => {
const pred = model.predict(tf.tensor([[form.x.value * 1, form.y.value * 1]]));
alert(`预测结果:${pred.dataSync()[0]}`);
};
};
前端代码
index.html
<script src="script.js">script>
<form action="" onsubmit="predict(this);return false;">
x: <input type="text" name="x">
y: <input type="text" name="y">
<button type="submit">预测button>
form>
export function getData(numSamples) {
let points = [];
function genGauss(cx, cy, label) {
for (let i = 0; i < numSamples / 2; i++) {
let x = normalRandom(cx);
let y = normalRandom(cy);
points.push({ x, y, label });
}
}
genGauss(2, 2, 0);
genGauss(-2, -2, 0);
genGauss(-2, 2, 1);
genGauss(2, -2, 1);
return points;
}
/**
* Samples from a normal distribution. Uses the seedrandom library as the
* random generator.
*
* @param mean The mean. Default is 0.
* @param variance The variance. Default is 1.
*/
function normalRandom(mean = 0, variance = 1) {
let v1, v2, s;
do {
v1 = 2 * Math.random() - 1;
v2 = 2 * Math.random() - 1;
s = v1 * v1 + v2 * v2;
} while (s > 1);
let result = Math.sqrt(-2 * Math.log(s) / s) * v1;
return mean + Math.sqrt(variance) * result;
}
script.js
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import { getData } from './data.js';
window.onload = async () => {
const data = getData(400);
tfvis.render.scatterplot(
{ name: 'XOR 训练数据' },
{
values: [
data.filter(p => p.label === 1),
data.filter(p => p.label === 0),
]
}
);
const model = tf.sequential();
model.add(tf.layers.dense({
units: 4,
inputShape: [2],
activation: 'relu'
}));
model.add(tf.layers.dense({
units: 1,
activation: 'sigmoid'
}));
model.compile({
loss: tf.losses.logLoss,
optimizer: tf.train.adam(0.1)
});
const inputs = tf.tensor(data.map(p => [p.x, p.y]));
const labels = tf.tensor(data.map(p => p.label));
await model.fit(inputs, labels, {
epochs: 10,
callbacks: tfvis.show.fitCallbacks(
{ name: '训练效果' },
['loss']
)
});
window.predict = (form) => {
const pred = model.predict(tf.tensor([[form.x.value * 1, form.y.value * 1]]));
alert(`预测结果:${pred.dataSync()[0]}`);
};
};
index.html
<script src="script.js">script>
<form action="" onsubmit="predict(this);return false;">
x: <input type="text" name="x">
y: <input type="text" name="y">
<button type="submit">预测button>
form>
操作步骤
import * as tf from '@tensorflow/tfjs';
export const IRIS_CLASSES =
['山鸢尾', '变色鸢尾', '维吉尼亚鸢尾'];
export const IRIS_NUM_CLASSES = IRIS_CLASSES.length;
// Iris flowers data. Source:
// https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
const IRIS_DATA = [
[5.1, 3.5, 1.4, 0.2, 0], [4.9, 3.0, 1.4, 0.2, 0], [4.7, 3.2, 1.3, 0.2, 0],
[4.6, 3.1, 1.5, 0.2, 0], [5.0, 3.6, 1.4, 0.2, 0], [5.4, 3.9, 1.7, 0.4, 0],
[4.6, 3.4, 1.4, 0.3, 0], [5.0, 3.4, 1.5, 0.2, 0], [4.4, 2.9, 1.4, 0.2, 0],
[4.9, 3.1, 1.5, 0.1, 0], [5.4, 3.7, 1.5, 0.2, 0], [4.8, 3.4, 1.6, 0.2, 0],
[4.8, 3.0, 1.4, 0.1, 0], [4.3, 3.0, 1.1, 0.1, 0], [5.8, 4.0, 1.2, 0.2, 0],
[5.7, 4.4, 1.5, 0.4, 0], [5.4, 3.9, 1.3, 0.4, 0], [5.1, 3.5, 1.4, 0.3, 0],
[5.7, 3.8, 1.7, 0.3, 0], [5.1, 3.8, 1.5, 0.3, 0], [5.4, 3.4, 1.7, 0.2, 0],
[5.1, 3.7, 1.5, 0.4, 0], [4.6, 3.6, 1.0, 0.2, 0], [5.1, 3.3, 1.7, 0.5, 0],
[4.8, 3.4, 1.9, 0.2, 0], [5.0, 3.0, 1.6, 0.2, 0], [5.0, 3.4, 1.6, 0.4, 0],
[5.2, 3.5, 1.5, 0.2, 0], [5.2, 3.4, 1.4, 0.2, 0], [4.7, 3.2, 1.6, 0.2, 0],
[4.8, 3.1, 1.6, 0.2, 0], [5.4, 3.4, 1.5, 0.4, 0], [5.2, 4.1, 1.5, 0.1, 0],
[5.5, 4.2, 1.4, 0.2, 0], [4.9, 3.1, 1.5, 0.1, 0], [5.0, 3.2, 1.2, 0.2, 0],
[5.5, 3.5, 1.3, 0.2, 0], [4.9, 3.1, 1.5, 0.1, 0], [4.4, 3.0, 1.3, 0.2, 0],
[5.1, 3.4, 1.5, 0.2, 0], [5.0, 3.5, 1.3, 0.3, 0], [4.5, 2.3, 1.3, 0.3, 0],
[4.4, 3.2, 1.3, 0.2, 0], [5.0, 3.5, 1.6, 0.6, 0], [5.1, 3.8, 1.9, 0.4, 0],
[4.8, 3.0, 1.4, 0.3, 0], [5.1, 3.8, 1.6, 0.2, 0], [4.6, 3.2, 1.4, 0.2, 0],
[5.3, 3.7, 1.5, 0.2, 0], [5.0, 3.3, 1.4, 0.2, 0], [7.0, 3.2, 4.7, 1.4, 1],
[6.4, 3.2, 4.5, 1.5, 1], [6.9, 3.1, 4.9, 1.5, 1], [5.5, 2.3, 4.0, 1.3, 1],
[6.5, 2.8, 4.6, 1.5, 1], [5.7, 2.8, 4.5, 1.3, 1], [6.3, 3.3, 4.7, 1.6, 1],
[4.9, 2.4, 3.3, 1.0, 1], [6.6, 2.9, 4.6, 1.3, 1], [5.2, 2.7, 3.9, 1.4, 1],
[5.0, 2.0, 3.5, 1.0, 1], [5.9, 3.0, 4.2, 1.5, 1], [6.0, 2.2, 4.0, 1.0, 1],
[6.1, 2.9, 4.7, 1.4, 1], [5.6, 2.9, 3.6, 1.3, 1], [6.7, 3.1, 4.4, 1.4, 1],
[5.6, 3.0, 4.5, 1.5, 1], [5.8, 2.7, 4.1, 1.0, 1], [6.2, 2.2, 4.5, 1.5, 1],
[5.6, 2.5, 3.9, 1.1, 1], [5.9, 3.2, 4.8, 1.8, 1], [6.1, 2.8, 4.0, 1.3, 1],
[6.3, 2.5, 4.9, 1.5, 1], [6.1, 2.8, 4.7, 1.2, 1], [6.4, 2.9, 4.3, 1.3, 1],
[6.6, 3.0, 4.4, 1.4, 1], [6.8, 2.8, 4.8, 1.4, 1], [6.7, 3.0, 5.0, 1.7, 1],
[6.0, 2.9, 4.5, 1.5, 1], [5.7, 2.6, 3.5, 1.0, 1], [5.5, 2.4, 3.8, 1.1, 1],
[5.5, 2.4, 3.7, 1.0, 1], [5.8, 2.7, 3.9, 1.2, 1], [6.0, 2.7, 5.1, 1.6, 1],
[5.4, 3.0, 4.5, 1.5, 1], [6.0, 3.4, 4.5, 1.6, 1], [6.7, 3.1, 4.7, 1.5, 1],
[6.3, 2.3, 4.4, 1.3, 1], [5.6, 3.0, 4.1, 1.3, 1], [5.5, 2.5, 4.0, 1.3, 1],
[5.5, 2.6, 4.4, 1.2, 1], [6.1, 3.0, 4.6, 1.4, 1], [5.8, 2.6, 4.0, 1.2, 1],
[5.0, 2.3, 3.3, 1.0, 1], [5.6, 2.7, 4.2, 1.3, 1], [5.7, 3.0, 4.2, 1.2, 1],
[5.7, 2.9, 4.2, 1.3, 1], [6.2, 2.9, 4.3, 1.3, 1], [5.1, 2.5, 3.0, 1.1, 1],
[5.7, 2.8, 4.1, 1.3, 1], [6.3, 3.3, 6.0, 2.5, 2], [5.8, 2.7, 5.1, 1.9, 2],
[7.1, 3.0, 5.9, 2.1, 2], [6.3, 2.9, 5.6, 1.8, 2], [6.5, 3.0, 5.8, 2.2, 2],
[7.6, 3.0, 6.6, 2.1, 2], [4.9, 2.5, 4.5, 1.7, 2], [7.3, 2.9, 6.3, 1.8, 2],
[6.7, 2.5, 5.8, 1.8, 2], [7.2, 3.6, 6.1, 2.5, 2], [6.5, 3.2, 5.1, 2.0, 2],
[6.4, 2.7, 5.3, 1.9, 2], [6.8, 3.0, 5.5, 2.1, 2], [5.7, 2.5, 5.0, 2.0, 2],
[5.8, 2.8, 5.1, 2.4, 2], [6.4, 3.2, 5.3, 2.3, 2], [6.5, 3.0, 5.5, 1.8, 2],
[7.7, 3.8, 6.7, 2.2, 2], [7.7, 2.6, 6.9, 2.3, 2], [6.0, 2.2, 5.0, 1.5, 2],
[6.9, 3.2, 5.7, 2.3, 2], [5.6, 2.8, 4.9, 2.0, 2], [7.7, 2.8, 6.7, 2.0, 2],
[6.3, 2.7, 4.9, 1.8, 2], [6.7, 3.3, 5.7, 2.1, 2], [7.2, 3.2, 6.0, 1.8, 2],
[6.2, 2.8, 4.8, 1.8, 2], [6.1, 3.0, 4.9, 1.8, 2], [6.4, 2.8, 5.6, 2.1, 2],
[7.2, 3.0, 5.8, 1.6, 2], [7.4, 2.8, 6.1, 1.9, 2], [7.9, 3.8, 6.4, 2.0, 2],
[6.4, 2.8, 5.6, 2.2, 2], [6.3, 2.8, 5.1, 1.5, 2], [6.1, 2.6, 5.6, 1.4, 2],
[7.7, 3.0, 6.1, 2.3, 2], [6.3, 3.4, 5.6, 2.4, 2], [6.4, 3.1, 5.5, 1.8, 2],
[6.0, 3.0, 4.8, 1.8, 2], [6.9, 3.1, 5.4, 2.1, 2], [6.7, 3.1, 5.6, 2.4, 2],
[6.9, 3.1, 5.1, 2.3, 2], [5.8, 2.7, 5.1, 1.9, 2], [6.8, 3.2, 5.9, 2.3, 2],
[6.7, 3.3, 5.7, 2.5, 2], [6.7, 3.0, 5.2, 2.3, 2], [6.3, 2.5, 5.0, 1.9, 2],
[6.5, 3.0, 5.2, 2.0, 2], [6.2, 3.4, 5.4, 2.3, 2], [5.9, 3.0, 5.1, 1.8, 2],
];
/**
* Convert Iris data arrays to `tf.Tensor`s.
*
* @param data The Iris input feature data, an `Array` of `Array`s, each element
* of which is assumed to be a length-4 `Array` (for petal length, petal
* width, sepal length, sepal width).
* @param targets An `Array` of numbers, with values from the set {0, 1, 2}:
* representing the true category of the Iris flower. Assumed to have the same
* array length as `data`.
* @param testSplit Fraction of the data at the end to split as test data: a
* number between 0 and 1.
* @return A length-4 `Array`, with
* - training data as `tf.Tensor` of shape [numTrainExapmles, 4].
* - training one-hot labels as a `tf.Tensor` of shape [numTrainExamples, 3]
* - test data as `tf.Tensor` of shape [numTestExamples, 4].
* - test one-hot labels as a `tf.Tensor` of shape [numTestExamples, 3]
*/
function convertToTensors(data, targets, testSplit) {
const numExamples = data.length;
if (numExamples !== targets.length) {
throw new Error('data and split have different numbers of examples');
}
// Randomly shuffle `data` and `targets`.
const indices = [];
for (let i = 0; i < numExamples; ++i) {
indices.push(i);
}
tf.util.shuffle(indices);
const shuffledData = [];
const shuffledTargets = [];
for (let i = 0; i < numExamples; ++i) {
shuffledData.push(data[indices[i]]);
shuffledTargets.push(targets[indices[i]]);
}
// Split the data into a training set and a tet set, based on `testSplit`.
const numTestExamples = Math.round(numExamples * testSplit);
const numTrainExamples = numExamples - numTestExamples;
const xDims = shuffledData[0].length;
// Create a 2D `tf.Tensor` to hold the feature data.
const xs = tf.tensor2d(shuffledData, [numExamples, xDims]);
// Create a 1D `tf.Tensor` to hold the labels, and convert the number label
// from the set {0, 1, 2} into one-hot encoding (.e.g., 0 --> [1, 0, 0]).
const ys = tf.oneHot(tf.tensor1d(shuffledTargets).toInt(), IRIS_NUM_CLASSES);
// Split the data into training and test sets, using `slice`.
const xTrain = xs.slice([0, 0], [numTrainExamples, xDims]);
const xTest = xs.slice([numTrainExamples, 0], [numTestExamples, xDims]);
const yTrain = ys.slice([0, 0], [numTrainExamples, IRIS_NUM_CLASSES]);
const yTest = ys.slice([0, 0], [numTestExamples, IRIS_NUM_CLASSES]);
return [xTrain, yTrain, xTest, yTest];
}
/**
* Obtains Iris data, split into training and test sets.
*
* @param testSplit Fraction of the data at the end to split as test data: a
* number between 0 and 1.
*
* @param return A length-4 `Array`, with
* - training data as an `Array` of length-4 `Array` of numbers.
* - training labels as an `Array` of numbers, with the same length as the
* return training data above. Each element of the `Array` is from the set
* {0, 1, 2}.
* - test data as an `Array` of length-4 `Array` of numbers.
* - test labels as an `Array` of numbers, with the same length as the
* return test data above. Each element of the `Array` is from the set
* {0, 1, 2}.
*/
export function getIrisData(testSplit) {
return tf.tidy(() => {
const dataByClass = [];
const targetsByClass = [];
for (let i = 0; i < IRIS_CLASSES.length; ++i) {
dataByClass.push([]);
targetsByClass.push([]);
}
for (const example of IRIS_DATA) {
const target = example[example.length - 1];
const data = example.slice(0, example.length - 1);
dataByClass[target].push(data);
targetsByClass[target].push(target);
}
const xTrains = [];
const yTrains = [];
const xTests = [];
const yTests = [];
for (let i = 0; i < IRIS_CLASSES.length; ++i) {
const [xTrain, yTrain, xTest, yTest] =
convertToTensors(dataByClass[i], targetsByClass[i], testSplit);
xTrains.push(xTrain);
yTrains.push(yTrain);
xTests.push(xTest);
yTests.push(yTest);
}
const concatAxis = 0;
return [
tf.concat(xTrains, concatAxis), tf.concat(yTrains, concatAxis),
tf.concat(xTests, concatAxis), tf.concat(yTests, concatAxis)
];
});
}
scripts.js
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import { getIrisData, IRIS_CLASSES } from './data';
window.onload = async () => {
//训练集特征 标签 验证集特征 标签
const [xTrain, yTrain, xTest, yTest] = getIrisData(0.15);
const model = tf.sequential();
model.add(tf.layers.dense({
units: 10,
inputShape: [xTrain.shape[1]],
activation: 'sigmoid'
}));
model.add(tf.layers.dense({
units: 3,
activation: 'softmax'
}));
model.compile({
loss: 'categoricalCrossentropy',
optimizer: tf.train.adam(0.1),
metrics: ['accuracy']
});
await model.fit(xTrain, yTrain, {
epochs: 100,
validationData: [xTest, yTest], //验证器
callbacks: tfvis.show.fitCallbacks(
{ name: '训练效果' },
['loss', 'val_loss', 'acc', 'val_acc'],
{ callbacks: ['onEpochEnd'] }
)
});
window.predict = (form) => {
const input = tf.tensor([[
form.a.value * 1,
form.b.value * 1,
form.c.value * 1,
form.d.value * 1,
]]);
const pred = model.predict(input);
alert(`预测结果:${IRIS_CLASSES[pred.argMax(1).dataSync(0)]}`);
};
};
前端页面 index.html
<script src="script.js">script>
<form action="" onsubmit="predict(this); return false;">
花萼长度:<input type="text" name="a"><br>
花萼宽度:<input type="text" name="b"><br>
花瓣长度:<input type="text" name="c"><br>
花瓣宽度:<input type="text" name="d"><br>
<button type="submit">预测button>
form>
什么是欠拟合?
简单来说就是数据集很复杂,模型太简单,导致数据无法拟合
什么是过拟合?