考研高等数学公式总结(一)

想要原版的可以购买我的资源,CSDN有些公式无法显示,且有篇幅限制,PDF资源或下载到本地可完美显示

基础预备知识

三角函数

csc ⁡   α = 1 sin ⁡   α \csc \ \alpha = \cfrac{1}{\sin \ \alpha} csc α=sin α1

sec ⁡   α = 1 cos ⁡   α \sec \ \alpha = \cfrac{1}{\cos \ \alpha} sec α=cos α1

cot ⁡   α = 1 tan ⁡   α \cot \ \alpha = \cfrac{1}{\tan \ \alpha} cot α=tan α1


sin ⁡ 2   α + cos ⁡ 2   α = 1 \sin^2 \ \alpha + \cos^2 \ \alpha = 1 sin2 α+cos2 α=1

1 + tan ⁡ 2   α = sec ⁡ 2   α 1+\tan^2 \ \alpha = \sec^2 \ \alpha 1+tan2 α=sec2 α

1 + cot ⁡ 2   α = csc ⁡ 2   α 1+\cot^2 \ \alpha = \csc ^2 \ \alpha 1+cot2 α=csc2 α


诱导公式

θ = k π 2 + α \theta = \cfrac{k \pi}{2}+\alpha θ=2kπ+α 奇变偶不变,符号看象限


倍角公式

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \sin 2\alpha=2\sin \alpha \cos \alpha sin2α=2sinαcosα

cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 1 − 2 sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 \cos 2\alpha=\cos^2 \alpha-\sin^2 \alpha = 1-2\sin^2 \alpha = 2\cos^2 \alpha-1 cos2α=cos2αsin2α=12sin2α=2cos2α1

sin ⁡ 3 α = − 4 sin ⁡ 3 α + 3 sin ⁡ α \sin 3\alpha = -4\sin^3 \alpha+3\sin\alpha sin3α=4sin3α+3sinα

cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \cos3\alpha=4\cos^3\alpha-3\cos\alpha cos3α=4cos3α3cosα

tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha = \cfrac {2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα

cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α \cot2\alpha=\cfrac{\cot^2\alpha-1}{2\cot\alpha} cot2α=2cotαcot2α1


半角

sin ⁡ 2 α 2 = 1 2 ( 1 − cos ⁡ α ) \sin^2 \cfrac \alpha 2 = \cfrac 12(1-\cos \alpha) sin22α=21(1cosα)

cos ⁡ 2 α 2 = 1 2 ( 1 + cos ⁡ α ) \cos^2 \cfrac \alpha 2= \cfrac 12(1+\cos \alpha) cos22α=21(1+cosα)

sin ⁡ α 2 = ± 1 − cos ⁡ α 2 \sin \cfrac \alpha 2 = \pm \sqrt{\cfrac{1-\cos \alpha}{2}} sin2α=±21cosα

cos ⁡ α 2 = ± 1 + cos ⁡ α 2 \cos \cfrac \alpha 2 = \pm \sqrt{\cfrac{1+\cos \alpha}{2}} cos2α=±21+cosα

tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α \tan \cfrac \alpha 2 =\cfrac{1-\cos\alpha}{\sin \alpha}=\cfrac{\sin\alpha}{1+\cos \alpha}=\pm \sqrt{\cfrac{1-\cos \alpha}{1+\cos\alpha}} tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα

cot ⁡ α 2 = sin ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α \cot \cfrac \alpha 2 =\cfrac{\sin\alpha}{1-\cos\alpha}=\cfrac{1+\cos \alpha}{\sin\alpha}=\pm \sqrt{\cfrac{1+\cos \alpha}{1-\cos\alpha}} cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

和差

sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin(\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta sin(α±β)=sinαcosβ±cosαsinβ

cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta cos(α±β)=cosαcosβsinαsinβ

tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha \pm \beta) = \cfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} tan(α±β)=1tanαtanβtanα±tanβ

cot ⁡ ( α ± β ) = cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α \cot(\alpha \pm \beta) = \cfrac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha} cot(α±β)=cotβ±cotαcotαcotβ1

积化和差

记住第一个,其他用诱导公式推

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \alpha \cos \beta = \cfrac 12[\sin(\alpha + \beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]

cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos \alpha \sin \beta = \cfrac 12[\sin(\alpha + \beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]

cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \alpha \cos \beta = \cfrac 12[\cos(\alpha + \beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]

sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \sin \alpha \sin \beta = \cfrac 12[\cos(\alpha - \beta)-\cos(\alpha+\beta)] sinαsinβ=21[cos(αβ)cos(α+β)]

和差化积

记住第一个,其他用诱导公式推

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin \alpha +\sin \beta = 2\sin\cfrac{\alpha+\beta}{2}\cos \cfrac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ

sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin \alpha -\sin \beta = 2\cos \cfrac{\alpha+\beta}{2}\sin\cfrac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ

cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos \alpha + \cos \beta = 2\cos\cfrac{\alpha+\beta}{2}\cos \cfrac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ

cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos \alpha - \cos \beta = -2\sin\cfrac{\alpha+\beta}{2} \sin \cfrac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ

万能公式

u = tan ⁡ x 2 ⇒ sin ⁡ x = 2 u 1 + u 2 , cos ⁡ x = 1 − u 2 1 + u 2 u=\tan \cfrac x2 \Rightarrow \sin x =\cfrac{2u}{1+u^2},\cos x=\cfrac{1-u^2}{1+u^2} u=tan2xsinx=1+u22u,cosx=1+u21u2

因式分解公式

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a+b)3=a3+3a2b+3ab2+b3

( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 (ab)3=a33a2b+3ab2b3

a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)

a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + . . . + a b n − 2 + b n − 1 ) a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1}) anbn=(ab)(an1+an2b+...+abn2+bn1)

n 是 正 偶 数 , a n + b n = ( a + b ) ( a n − 1 − a n − 2 b + . . . + a b n − 2 − b n − 1 ) n是正偶数,a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+...+ab^{n-2}-b^{n-1}) nan+bn=(a+b)(an1an2b+...+abn2bn1)

n 是 正 奇 数 , a n + b n = ( a + b ) ( a n − 1 − a n − 2 b + . . . − a b n − 2 + b n − 1 ) n是正奇数,a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+...-ab^{n-2}+b^{n-1}) nan+bn=(a+b)(an1an2b+...abn2+bn1)

( a + b ) n = ∑ k = 0 n C n k a n − k b k (a+b)^n=\sum_{k=0}^nC_n^ka^{n-k}b^k (a+b)n=k=0nCnkankbk

常用不等式

a b ⩽ a + b 2 ⩽ a 2 + b 2 2 ( a , b > 0 ) \sqrt{ab} \leqslant \cfrac{a+b}{2} \leqslant \sqrt{\cfrac{a^2+b^2}{2}}(a,b>0) ab 2a+b2a2+b2 (a,b>0)

a b c 3 ⩽ a + b + c 3 ⩽ a 2 + b 2 + c 2 3 ( a , b , c > 0 ) \sqrt[3]{abc} \leqslant \cfrac{a+b+c}{3} \leqslant \sqrt{\cfrac{a^2+b^2+c^2}{3}}(a,b,c>0) 3abc 3a+b+c3a2+b2+c2 (a,b,c>0)

a < x < b , c < y < d ⇒ a d < x y < b c aa<x<b,c<y<dda<yx<cb

sin ⁡ x < x < tan ⁡ x ( 0 < x < π 2 ) \sin x < x <\tan x(0sinx<x<tanx(0<x<2π)

a r c tan ⁡ x ⩽ x ⩽ a r c sin ⁡ x ( 0 ⩽ x ⩽ 1 ) arc\tan x \leqslant x \leqslant arc \sin x(0\leqslant x\leqslant 1) arctanxxarcsinx(0x1)

e x ⩾ x + 1 e^x\geqslant x+1 exx+1

ln ⁡ x ⩽ x − 1 ( x > 0 ) \ln x\leqslant x-1(x>0) lnxx1(x>0)

1 1 + x < ln ⁡ ( 1 + 1 x ) < 1 x ( x > 0 ) \cfrac{1}{1+x}<\ln (1+\cfrac{1}{x})<\cfrac{1}{x}(x>0) 1+x1<ln(1+x1)<x1(x>0)

x 1 + x < ln ⁡ ( 1 + x ) < x ( x > 0 ) \cfrac{x}{1+x}<\ln (1+x)0) 1+xx<ln(1+x)<x(x>0)

放缩法

∑ i = 1 n u i = u 1 + u 2 + . . . + u n 当 n 无 穷 大 , 则 n ⋅ u m i n ⩽ ∑ i = 1 n u i ⩽ n ⋅ u m a x 当 n 为 有 限 数 , 则 1 ⋅ u m a x ⩽ ∑ i = 1 n u i ⩽ n ⋅ u m a x \sum_{i=1}^nu_i=u_1+u_2+...+u_n\\ 当n无穷大,则n \cdot u_{min} \leqslant \sum_{i=1}^nu_i \leqslant n \cdot u_{max}\\ 当n为有限数,则1 \cdot u_{max} \leqslant \sum_{i=1}^nu_i \leqslant n \cdot u_{max}\\ i=1nui=u1+u2+...+unnnumini=1nuinumaxn1umaxi=1nuinumax

泰勒公式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , ξ ∈ ( x , x 0 ) (带拉格朗日余项的泰勒公式) f(x)=f(x_0)+f'(x_0)(x-x_0)+...+\cfrac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\cfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1},\xi \in (x,x_0)\tag{带拉格朗日余项的泰勒公式} f(x)=f(x0)+f(x0)(xx0)+...+n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1ξ(x,x0)()

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) (带佩亚诺余项的泰勒公式) f(x)=f(x_0)+f'(x_0)(x-x_0)+...+\cfrac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n)\tag{带佩亚诺余项的泰勒公式} f(x)=f(x0)+f(x0)(xx0)+...+n!1f(n)(x0)(xx0)n+o((xx0)n)()

泰 勒 公 式 中 令 x = 0 的 展 开 , 可 带 拉 格 朗 日 或 佩 亚 诺 余 项 , 有 时 将 ξ = θ x , θ ∈ ( 0 , 1 ) (麦克劳林公式) 泰勒公式中令x=0的展开,可带拉格朗日或佩亚诺余项,有时将\xi=\theta x,\theta\in(0,1)\tag{麦克劳林公式} x=0ξ=θx,θ(0,1)()

f ( x , y ) = f ( x 0 , y 0 ) + ( f x ′ , f y ′ ) X 0 ∣ Δ x Δ y ∣ + 1 2 ! ( Δ x   Δ y ) ∣ f x x ′ ′ f x y ′ ′ f y x ′ ′ f y y ′ ′ ∣ X 0 ∣ Δ x Δ y ∣ + R (多元函数泰勒公式) f(x,y)=f(x_0,y_0)+(f_x',f_y')_{X_0} \begin{vmatrix} \Delta x\\ \Delta y\\ \end{vmatrix} + \cfrac1{2!}(\Delta x\ \Delta y) \begin{vmatrix} f_{xx}''&f_{xy}''\\ f_{yx}''&f_{yy}''\\ \end{vmatrix}_{X_0} \begin{vmatrix} \Delta x\\ \Delta y\\ \end{vmatrix} +R \tag{多元函数泰勒公式} f(x,y)=f(x0,y0)+(fx,fy)X0ΔxΔy+2!1(Δx Δy)fxxfyxfxyfyyX0ΔxΔy+R()

e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) = ∑ n = 0 ∞ x n n ! 1 1 + x = 1 − x + x 2 − x 3 + o ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x n , ∣ x ∣ < 1 1 1 − x = 1 + x + x 2 + x 3 + o ( x 3 ) = ∑ n = 0 ∞ x n , ∣ x ∣ < 1 ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n , − 1 < x ⩽ 1 sin ⁡   x = x − x 3 3 ! + o ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! cos ⁡   x = 1 − x 2 2 + o ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + . . . + a ( a − 1 ) . . . ( a − n + 1 ) n ! x n + . . . tan ⁡   x = x + x 3 3 + o ( x 3 ) a r c sin ⁡   x = x + x 3 6 + o ( x 3 ) a r c tan ⁡   x = x − x 3 3 + o ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 , ∣ x ∣ ⩽ 1 e x + e − x 2 = ∑ n = 0 ∞ x 2 n ( 2 n ) ! e x − e − x 2 = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! − ln ⁡ ( 1 − x ) = ∑ n = 1 ∞ x n n , 1 ⩽ x < 1 x ( 1 − x ) 2 = ∑ n = 1 ∞ n x n , − 1 < x < 1 \begin{aligned} & e^x = 1+x+\cfrac{x^2}{2!}+\cfrac{x^3}{3!}+o(x^3)=\sum_{n=0}^{\infty}\cfrac{x^n}{n!} \\ & \cfrac{1}{1+x} = 1-x+x^2-x^3+o(x^3)=\sum_{n=0}^{\infty}(-1)^nx^n ,|x|<1 \\ & \cfrac{1}{1-x} = 1+x+x^2+x^3+o(x^3)=\sum_{n=0}^{\infty}x^n ,|x|<1 \\ & \ln (1+x) = x-\cfrac{x^2}{2}+\cfrac{x^3}3+o(x^3)=\sum_{n=1}^{\infty}(-1)^{n-1}\cfrac{x^n}{n},-1 < x \leqslant 1 \\ & \sin \ x = x-\cfrac{x^3}{3!}+o(x^3)=\sum_{n=0}^{\infty}(-1)^{n}\cfrac{x^{2n+1}}{(2n+1)!} \\ & \cos \ x = 1-\cfrac{x^2}{2}+o(x^3)=\sum_{n=0}^{\infty}(-1)^{n}\cfrac{x^{2n}}{(2n)!} \\ & (1+x)^a = 1+ax+\cfrac{a(a-1)}{2!}x^2+ ... + \cfrac{a(a-1)...(a-n+1)}{n!}x^n+... \\ & \tan \ x = x+\cfrac{x^3}{3}+o(x^3)\\ & arc\sin \ x = x+\cfrac{x^3}{6}+o(x^3)\\ & arc\tan \ x = x-\cfrac{x^3}{3}+o(x^3)=\sum_{n=0}^{\infty}(-1)^{n}\cfrac{x^{2n+1}}{2n+1},|x|\leqslant 1\\ & \cfrac{e^x+e^{-x}}{2}=\sum_{n=0}^\infty\cfrac{x^{2n}}{(2n)!}\\ & \cfrac{e^x-e^{-x}}{2}=\sum_{n=0}^\infty\cfrac{x^{2n+1}}{(2n+1)!}\\ & -\ln(1-x)=\sum_{n=1}^{\infty}\cfrac{x^n}n,1\leqslant x < 1\\ & \cfrac x{(1-x)^2}=\sum_{n=1}^{\infty}nx^n,-1ex=1+x+2!x2+3!x3+o(x3)=n=0n!xn1+x1=1x+x2x3+o(x3)=n=0(1)nxn,x<11x1=1+x+x2+x3+o(x3)=n=0xn,x<1ln(1+x)=x2x2+3x3+o(x3)=n=1(1)n1nxn,1<x1sin x=x3!x3+o(x3)=n=0(1)n(2n+1)!x2n+1cos x=12x2+o(x3)=n=0(1)n(2n)!x2n(1+x)a=1+ax+2!a(a1)x2+...+n!a(a1)...(an+1)xn+...tan x=x+3x3+o(x3)arcsin x=x+6x3+o(x3)arctan x=x3x3+o(x3)=n=0(1)n2n+1x2n+1,x12ex+ex=n=0(2n)!x2n2exex=n=0(2n+1)!x2n+1ln(1x)=n=1nxn,1x<1(1x)2x=n=1nxn,1<x<1

常用无穷小

sin ⁡   x ∼ tan ⁡   x ∼ a r c sin ⁡   x ∼ a r c tan ⁡   x ∼ x ln ⁡ ( 1 + x ) ∼ e x − 1 ∼ x a x − 1 ∼ x ln ⁡ a 1 − cos ⁡   x ∼ 1 2 x 2 ( 1 + 1 x ) x = e ( x → + ∞ ) ( 1 + x ) α − 1 ∼ α x \begin{aligned} &\\ & \sin \ x \sim \tan \ x \sim arc\sin \ x \sim arc\tan \ x \sim x \\ & \ln (1+x) \sim e^x -1 \sim x \\ & a^x-1 \sim x \ln a \\ & 1-\cos \ x \sim \cfrac 12 x^2 \\ &(1+\cfrac 1x)^x = e(x \rightarrow + \infty)\\ & (1+x)^{\alpha}-1 \sim \alpha x \end{aligned} sin xtan xarcsin xarctan xxln(1+x)ex1xax1xlna1cos x21x2(1+x1)x=e(x+)(1+x)α1αx

基本求导公式

( x α ) ′ = a x α − 1 (x^{\alpha})' = ax^{\alpha-1} (xα)=axα1

( a x ) ′ = a x ln ⁡ a (a^x)' = a^x\ln a (ax)=axlna

( e x ) ′ = e x (e^x)' = e^x (ex)=ex

( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) (\log_a x)' = \cfrac {1}{x \ln a} (a>0,a \neq 1) (logax)=xlna1(a>0,a=1)

( ln ⁡ x ) ′ = 1 x (\ln x)' = \cfrac {1}{x} (lnx)=x1

( sin ⁡   x ) ′ = cos ⁡   x (\sin \ x)' = \cos \ x (sin x)=cos x

( cos ⁡   x ) ′ = − sin ⁡   x (\cos \ x)' = -\sin \ x (cos x)=sin x

( a r c sin ⁡   x ) ′ = 1 1 − x 2 (arc\sin \ x)' = \cfrac {1}{\sqrt {1-x^2}} (arcsin x)=1x2 1

( a r c cos ⁡   x ) ′ = − 1 1 − x 2 (arc\cos \ x)' = -\cfrac {1}{\sqrt {1-x^2}} (arccos x)=1x2 1

( tan ⁡   x ) ′ = sec ⁡ 2   x (\tan\ x)' = \sec^2 \ x (tan x)=sec2 x

( cot ⁡   x ) ′ = − csc ⁡ 2   x (\cot\ x)' = -\csc^2 \ x (cot x)=csc2 x

( a r c tan ⁡   x ) ′ = 1 1 + x 2 (arc\tan \ x)' = \cfrac {1}{1+x^2} (arctan x)=1+x21

( a r c cot ⁡   x ) ′ = − 1 1 + x 2 (arc\cot \ x)' = -\cfrac {1}{1+x^2} (arccot x)=1+x21

( sec ⁡   x ) ′ = sec ⁡   x tan ⁡   x (\sec \ x)' = \sec \ x \tan \ x (sec x)=sec xtan x

( csc ⁡   x ) ′ = − csc ⁡   x cot ⁡   x (\csc \ x)' = - \csc \ x \cot \ x (csc x)=csc xcot x

[ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 [\ln(x+\sqrt{x^2+1})]' = \cfrac {1}{\sqrt{x^2+1}} [ln(x+x2+1 )]=x2+1 1

[ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 [\ln(x+\sqrt{x^2-1})]' = \cfrac {1}{\sqrt{x^2-1}} [ln(x+x21 )]=x21 1

高阶求导公式

d 2 y d x 2 = d d y d x d x = d ( d y d x / d t ) d x / d t = ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ψ ′ ′ ( t ) [ ψ ′ ( t ) ] 3 (参数方程二阶) \cfrac{d^2y}{dx^2}=\cfrac{d\cfrac{dy}{dx}}{dx}=\cfrac{d(\cfrac{dy}{dx}/dt)}{dx/dt}=\cfrac{\psi''(t)\phi'(t)-\psi'(t)\psi''(t)}{[\psi'(t)]^3} \tag{参数方程二阶} dx2d2y=dxddxdy=dx/dtd(dxdy/dt)=[ψ(t)]3ψ(t)ϕ(t)ψ(t)ψ(t)()

y x x ′ ′ = d ( d y d x ) d x = d ( 1 x y ′ ) d y . 1 x y ′ = − x y y ′ ′ ( x y ′ ) 3 (反函数二阶) y_{xx}''=\cfrac{d(\cfrac{dy}{dx})}{dx}=\cfrac{d(\cfrac{1}{x_y'})}{dy}.\cfrac{1}{x_y'}=\cfrac{-x_{yy}''}{(x_{y}')^3} \tag{反函数二阶} yxx=dxd(dxdy)=dyd(xy1).xy1=(xy)3xyy()

( u v ) ( n ) = ∑ k = 0 n C n u ( n − k ) v ( k ) (莱布尼茨公式) (uv)^{(n)} = \sum_{k=0}^nC_nu^{(n-k)}v^{(k)} \tag{莱布尼茨公式} (uv)(n)=k=0nCnu(nk)v(k)()

( a x ) ( n ) = a x ( ln ⁡ a ) n (a^x)^{(n)}=a^x(\ln a)^n (ax)(n)=ax(lna)n

( e x ) ( n ) = e x (e^x)^{(n)}=e^x (ex)(n)=ex

( sin ⁡ k x ) ( n ) = k n sin ⁡ ( k x + n ∗ π 2 ) (\sin kx)^{(n)}=k^n\sin(kx+n*\cfrac{\pi}{2}) (sinkx)(n)=knsin(kx+n2π)

( cos ⁡ k x ) ( n ) = k n cos ⁡ ( k x + n ∗ π 2 ) (\cos kx)^{(n)}=k^n\cos(kx+n*\cfrac{\pi}{2}) (coskx)(n)=kncos(kx+n2π)

( 1 x + a ) ( n ) = ( − 1 ) n n ! ( x + a ) n + 1 (\cfrac{1}{x+a})^{(n)}=\cfrac{(-1)^n n!}{(x+a)^{n+1}} (x+a1)(n)=(x+a)n+1(1)nn!

( ln ⁡ x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (\ln x)^{(n)}=(-1)^{n-1}\cfrac{(n-1)!}{x^n} (lnx)(n)=(1)n1xn(n1)!

[ ln ⁡ ( 1 + x ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n [\ln (1+x)]^{(n)}=(-1)^{n-1}\cfrac{(n-1)!}{(1+x)^n} [ln(1+x)](n)=(1)n1(1+x)n(n1)!

[ ( x + x 0 ) m ] ( n ) = m ( m − 1 ) ( m − 2 ) . . . ( m − n + 1 ) ( x + x 0 ) m − n [(x+x_0)^m]^{(n)}=m(m-1)(m-2)...(m-n+1)(x+x_0)^{m-n} [(x+x0)m](n)=m(m1)(m2)...(mn+1)(x+x0)mn

中值定理

定理 条件 结论
有界与最值定理 f ( x ) 在 [ a , b ] 上 连 续 f(x)在[a,b]上连续 f(x)[a,b] m ⩽ f ( x ) ⩽ M m \leqslant f(x) \leqslant M mf(x)M
介值定理 f ( x ) 在 [ a , b ] 上 连 续 f(x)在[a,b]上连续 f(x)[a,b] m ⩽ μ ⩽ M m \leqslant \mu \leqslant M mμM 存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b],使得 f ( ξ ) = μ f(\xi )=\mu f(ξ)=μ
平均值定理 f ( x ) 在 [ a , b ] 上 连 续 f(x)在[a,b]上连续 f(x)[a,b] a < x 1 < x 2 < . . . < x n < b aa<x1<x2<...<xn<b [ x 1 , x n ] [x_1,x_n] [x1,xn]内存在 ξ \xi ξ,使 f ( ξ ) = f ( x 1 ) + f ( x 2 ) + . . . + f ( x n ) n f(\xi)=\cfrac{f(x_1)+f(x_2)+...+f(x_n)}{n} f(ξ)=nf(x1)+f(x2)+...+f(xn)
零点定理 f ( x ) 在 [ a , b ] 上 连 续 , f(x)在[a,b]上连续, f(x)[a,b] f ( a ) ∗ f ( b ) < 0 f(a)*f(b)<0 f(a)f(b)<0 存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b],使得 f ( ξ ) = 0 f(\xi )=0 f(ξ)=0
费马定理 f ( x ) f(x) f(x) x 0 x_0 x0处:可导+取极值 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
罗尔定理 f ( x ) f(x) f(x)满足: [ a , b ] [a,b] [a,b]连续+ ( a , b ) (a,b) (a,b)可导+ f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) 存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi )=0 f(ξ)=0
拉格朗日中值定理 f ( x ) f(x) f(x)满足: [ a , b ] [a,b] [a,b]连续+ ( a , b ) (a,b) (a,b)可导 存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi )(b-a) f(b)f(a)=f(ξ)(ba)
柯西中值定理 f ( x ) f(x) f(x)满足: [ a , b ] [a,b] [a,b]连续+ ( a , b ) (a,b) (a,b)可导= g ′ ( x ) ≠ 0 g'(x) \neq0 g(x)=0 存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \cfrac{f(b)-f(a)}{g(b)-g(a)}=\cfrac{f'(\xi )}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
积分中值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续 存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b]或者 ξ ∈ ( a , b ) [ 加 强 形 式 ] \xi \in (a,b)[加强形式] ξ(a,b)[],使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^bf(x)dx=f(\xi )(b-a) abf(x)dx=f(ξ)(ba)
二重积分中值定理 f ( x , y ) f(x,y) f(x,y) D D D上连续 存在 ( ξ , η ) ∈ D (\xi,\eta)\in D (ξ,η)D,使得 ∬ D f ( x , y ) d σ = S D × f ( ξ , η ) \iint_Df(x,y)d\sigma=S_D \times f(\xi,\eta) Df(x,y)dσ=SD×f(ξ,η)

常见辅助函数构造

函数形式 简明形式 构造函数(原函数) F ( x ) = F(x)= F(x)=
f ′ ( x ) + g ( x ) f ( x ) = h ( x ) f'(x)+g(x)f(x)=h(x) f(x)+g(x)f(x)=h(x) f ′ + g f = h f'+gf=h f+gf=h F ( x ) = f ( x ) e ∫ g ( x ) d x − ∫ h ( x ) e ∫ g ( x ) d x d x F(x)=f(x)e^{\int g(x)dx}-\int h(x)e^{\int g(x)dx}dx F(x)=f(x)eg(x)dxh(x)eg(x)dxdx
2 f ( x ) ∗ f ′ ( x ) 2f(x)*f'(x) 2f(x)f(x) f f ′ ff' ff f 2 ( x ) f^2(x) f2(x)
[ f ′ ( x ) ] 2 + f ( x ) f ′ ′ ( x ) [f'(x)]^2+f(x)f''(x) [f(x)]2+f(x)f(x) [ f ′ ] 2 + f f ′ ′ [f']^2+ff'' [f]2+ff f ( x ) f ′ ( x ) f(x)f'(x) f(x)f(x)
f ′ ( x ) + f ( x ) ϕ ′ ( x ) f'(x)+f(x)\phi '(x) f(x)+f(x)ϕ(x) f ′ + ϕ f f'+\phi f f+ϕf f ( x ) e ϕ ( x ) f(x)e^{\phi(x)} f(x)eϕ(x)
f ′ ( x ) + f ( x ) f'(x)+f(x) f(x)+f(x) f ′ + f f'+f f+f f ( x ) e x f(x)e^{x} f(x)ex
f ′ ( x ) − f ( x ) f'(x)-f(x) f(x)f(x) f ′ − f f'-f ff f ( x ) e − x f(x)e^{-x} f(x)ex
f ′ ( x ) + k f ( x ) f'(x)+kf(x) f(x)+kf(x) f ′ + k f f'+kf f+kf f ( x ) e k x f(x)e^{kx} f(x)ekx
f ( x ) f(x) f(x) f f f ∫ a x f ( t ) d t \int_a^xf(t)dt axf(t)dt
f ′ ( x ) f ( x ) \cfrac{f'(x)}{f(x)} f(x)f(x) f ′ f \cfrac {f'}f ff ln ⁡ f ( x ) \ln f(x) lnf(x)
f ′ ( x ) x − f ( x ) f'(x)x-f(x) f(x)xf(x) f ′ x − f f'x-f fxf f ( x ) x \cfrac{f(x)}x xf(x)
f ′ ′ ( x ) f ( x ) − [ f ′ ( x ) ] 2 f''(x)f(x)-[f'(x)]^2 f(x)f(x)[f(x)]2 f ′ ′ f − [ f ′ ] 2 f''f-[f']^2 ff[f]2 f ′ ( x ) f ( x ) \cfrac{f'(x)}{f(x)} f(x)f(x) ln ⁡ f ( x ) \ln f(x) lnf(x)的二阶导用于研究凹凸性
u ′ ′ + 2 u ′ v ′ + v ′ ′ u''+2u'v'+v'' u+2uv+v ( u v ) ′ ′ (uv)'' (uv)
∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx ∫ a x f ( t ) d t \int_a^xf(t)dt axf(t)dt

你可能感兴趣的:(考研,笔记,学习)