1个K均值算法
实际上,K-means算法是一种非常简单的算法,与算法思想或特定实现无关. 通过以一定方式测量样本之间的相似度,并迭代更新聚类中心,它属于无监督分类. 当聚类中心不再移动或移动差异小于阈值时,将样本分为不同的类别.
1.1算法思想
随机选择群集中心. 根据当前聚类中心,使用选择的测量方法对所有样本点进行分类,以计算每个类别的样本点的平均值,作为下一次迭代的聚类中心. 当类中心和当前聚类中心之间的距离(例如4中的距离)小于给定的迭代阈值时,迭代结束. 否则,请继续下一次迭代,直到2
1.2测量方法
根据聚类中心,所有采样点均分为最相似的类别. 这需要有效的巩固,并且平方差是最常用的度量,方法如下
2应用于图像分割
我们知道,无论是灰度图像还是RGB彩像,它实际上都是具有灰度值的矩阵. 因此聚类 图像分割,图像数据格式确定图像分割的方向. K-means聚类算法非常简单,非常具体.
2.1代码
导入必要的软件包
import numpy as np
import random
损失函数
def loss_function(present_center, pre_center):
'''
损失函数,计算上一次与当前聚类中的差异(像素差的平方和)
:param present_center: 当前聚类中心
:param pre_center: 上一次聚类中心
:return: 损失值
'''
present_center = np.array(present_center)
pre_center = np.array(pre_center)
return np.sum((present_center - pre_center)**2)
分类器
def classifer(intput_signal, center):
'''
分类器(通过当前的聚类中心,给输入图像分类)
:param intput_signal: 输入图像
:param center: 聚类中心
:return: 标签矩阵
'''
input_row, input_col= intput_signal.shape # 输入图像的尺寸
pixls_labels = np.zeros((input_row, input_col)) # 储存所有像素标签
pixl_distance_t = [] # 单个元素与所有聚类中心的距离,临时用
for i in range(input_row):
for j in range(input_col):
# 计算每个像素与所有聚类中心的差平方
for k in range(len(center)):
distance_t = np.sum(abs((intput_signal[i, j]).astype(int) - center[k].astype(int))**2)
pixl_distance_t.append(distance_t)
# 差异最小则为该类
pixls_labels[i, j] = int(pixl_distance_t.index(min(pixl_distance_t)))
# 清空该list,为下一个像素点做准备
pixl_distance_t = []
return pixls_labels
基于k均值算法的图像分割
def k_means(input_signal, center_num, threshold):
'''
基于k-means算法的图像分割(适用于灰度图)
:param input_signal: 输入图像
:param center_num: 聚类中心数目
:param threshold: 迭代阈值
:return:
'''
input_signal_cp = np.copy(input_signal) # 输入信号的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸
pixls_labels = np.zeros((input_row, input_col)) # 储存所有像素标签
# 随机初始聚类中心行标与列标
initial_center_row_num = [i for i in range(input_row)]
random.shuffle(initial_center_row_num)
initial_center_row_num = initial_center_row_num[:center_num]
initial_center_col_num = [i for i in range(input_col)]
random.shuffle(initial_center_col_num)
initial_center_col_num = initial_center_col_num[:center_num]
# 当前的聚类中心
present_center = []
for i in range(center_num):
present_center.append(input_signal_cp[initial_center_row_num[i], initial_center_row_num[i]])
pixls_labels = classifer(input_signal_cp, present_center)
num = 0 # 用于记录迭代次数
while True:
pre_centet = present_center.copy() # 储存前一次的聚类中心
# 计算当前聚类中心
for n in range(center_num):
temp = np.where(pixls_labels == n)
present_center[n] = sum(input_signal_cp[temp].astype(int)) / len(input_signal_cp[temp])
# 根据当前聚类中心分类
pixls_labels = classifer(input_signal_cp, present_center)
# 计算上一次聚类中心与当前聚类中心的差异
loss = loss_function(present_center, pre_centet)
num = num + 1
print("Step:"+ str(num) + " Loss:" + str(loss))
# 当损失小于迭代阈值时,结束迭代
if loss <= threshold:
break
return pixls_labels
3分类效果
聚类中心数= 3,迭代阈值= 1 = 1
聚类中心数= 3,迭代阈值= 1 = 1
4个GitHub
点击我
以上是本文的全部内容聚类 图像分割,希望对大家的学习有所帮助,并希望您支持脚本编写室.
本文来自电脑杂谈,转载请注明本文网址:
http://www.pc-fly.com/a/jisuanjixue/article-184687-1.html