gabor特征提取 matlab,Gabor特征提取

在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器。在空间域中,一个二维Gabor滤波器是一个由正弦平面波调制的高斯核函数。Gabor分为实部和虚部,用实部进行滤波后图像会平滑;虚部滤波后用来检测边缘。

Gabor滤波器的脉冲响应,可以定义为一个正弦波(对于二维Gabor滤波器是正弦平面波)乘以高斯函数。由于乘法卷积性质,Gabor滤波器的脉冲响应的傅立叶变换是其调和函数的傅立叶变换和高斯函数傅立叶变换的卷积。该滤波器由实部和虚部组成,二者相互正交。一组不同频率不同方向的Gabor函数数组对于图像特征提取非常有用。​

下面给出二维Gabor函数的数学表达:​

复数表达:​

a4c26d1e5885305701be709a3d33442f.png

实数部分:

a4c26d1e5885305701be709a3d33442f.png

虚数部分:

a4c26d1e5885305701be709a3d33442f.png

其中:

a4c26d1e5885305701be709a3d33442f.png

a4c26d1e5885305701be709a3d33442f.png

波长(λ):它的值以像素为单位指定,通常大于等于2.但不能大于输入图像尺寸的五分之一。

方向(θ):这个参数指定了Gabor函数并行条纹的方向,它的取值为0到360度

相位偏移(φ):它的取值范围为-180度到180度。其中,0和180度分别对应中心对称的center-on函数和center-off函数,而-90度和90度对应反对称函数。

长宽比(γ):空间纵横比,决定了Gabor函数形状(support,我翻译为形状)的椭圆率(ellipticity)。当γ=

1时,形状是圆的。当γ<

1时,形状随着平行条纹方向而拉长。通常该值为0.5

​带宽(b):Gabor滤波器的半响应空间频率带宽b和σ/

λ的比率有关,其中σ表示Gabor函数的高斯因子的标准差,如下:

a4c26d1e5885305701be709a3d33442f.png

σ的值不能直接设置,它仅随着带宽b变化。带宽值必须是正实数,通常为1,此时,标准差和波长的关系为:σ=

0.56

λ。带宽越小,标准差越大,Gabor形状越大,可见平行兴奋和抑制区条纹数量越多。​

二、用gabor提取纹理特征的思路

Gabor滤波方法的主要思想是:不同纹理一般具有不同的中心频率及带宽,根据这些频率和带宽可以设计一组Gabor滤波器对纹理图像进行滤波,每个Gabor滤波器只允许与其频率相对应的纹理顺利通过,而使其他纹理的能量受到抑制,从各滤波器的输出结果中分析和提取纹理特征,用于之后的分类或分割任务。Gabor滤波器提取纹理特征主要包括两个过程:①设计滤波器(例如函数、数目、方向和间隔);②从滤波器的输出结果中提取有效纹理特征集。Gabor滤波器是带通滤波器,它的单位冲激响应函数(Gabor函数)是高斯函数与复指数函的乘积。它是达到时频测不准关系下界的函数,具有最好地兼顾信号在时频域的分辨能力。

实现步骤:

(1)将输入图像分为3×3(9块)和4×4(16块)的图像块;

(2)建立Gabor滤波器组:选择4个尺度,6个方向,这样组成了24个Gabor滤波器;

(3)Gabor滤波器组与每个图像块在空域卷积,每个图像块可以得到24个滤波器输出,这些输出是图像块大小的图像,如果直接将其作为特征向量,特征空间的维数会很大,

所以需要“浓缩”;

(4)每个图像块经过Gabor滤波器组的24个输出,要“浓缩”(文中提到“average filter

responses within the

block”我的理解是取灰度均值)为一个24×1的列向量作为该图像块的纹理特征。查阅相关文献,发现也可以用方差。

你可能感兴趣的:(gabor特征提取,matlab)