NNDL 作业8:RNN - 简单循环网络

目录

  • 1. 使用Numpy实现SRN
  • 2. 在1的基础上,增加激活函数tanh
  • 3. 分别使用nn.RNNCell、nn.RNN实现SRN
    • 3.1 用torch.nn.RNNCell()
    • 3.2 用nn.RNN()
  • 4. 分析“二进制加法” 源代码(选做)
  • 5. 实现“Character-Level Language Models”源代码(必做)
  • 6. 分析“序列到序列”源代码(选做)
  • 7. “编码器-解码器”的简单实现(必做)
  • 总结
  • 参考

1. 使用Numpy实现SRN

NNDL 作业8:RNN - 简单循环网络_第1张图片

# coding=gbk

import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)

w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t)
    in_h2 = np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t)
    state_t = in_h1, in_h2
    print('a', state_t, in_h1, in_h2)
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

结果:
NNDL 作业8:RNN - 简单循环网络_第2张图片

2. 在1的基础上,增加激活函数tanh

NNDL 作业8:RNN - 简单循环网络_第3张图片

# coding=gbk
import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)

w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

结果:
NNDL 作业8:RNN - 简单循环网络_第4张图片

3. 分别使用nn.RNNCell、nn.RNN实现SRN

NNDL 作业8:RNN - 简单循环网络_第5张图片

torch.nn.RNN()调用的是循环神经网络最原始的形态,这种没法处理比较长的时间序列,后面的变体Lstm和GRU解决了这个问题,这里只是用torch.nn.RNN()展示一下循环神经网络的一些基本参数等信息,当然有些大神也是直接调用这个去搭建一些自己需要的网络结构。

RNN是读取了0时刻的隐层信息h0,剩下的过程是自动循环完成的,而RNNCell就需要自己写循环处理。

RNNCell是单层结构,所以每次的输出,就是对应时刻元素x的输出。

NNDL 作业8:RNN - 简单循环网络_第6张图片

NNDL 作业8:RNN - 简单循环网络_第7张图片

3.1 用torch.nn.RNNCell()

import torch
 
batch_size = 1
seq_len = 3  # 序列长度
input_size = 2  # 输入序列维度
hidden_size = 2  # 隐藏层维度
output_size = 2  # 输出层维度
 
# RNNCell
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
# 初始化参数 https://zhuanlan.zhihu.com/p/342012463
for name, param in cell.named_parameters():
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])
 
seq = torch.Tensor([[[1, 1]],
                    [[1, 1]],
                    [[2, 2]]])
hidden = torch.zeros(batch_size, hidden_size)
output = torch.zeros(batch_size, output_size)
 
for idx, input in enumerate(seq):
    print('=' * 20, idx, '=' * 20)
 
    print('Input :', input)
    print('hidden :', hidden)
 
    hidden = cell(input, hidden)
    output = liner(hidden)
    print('output :', output)

结果:
NNDL 作业8:RNN - 简单循环网络_第8张图片

3.2 用nn.RNN()

# coding=gbk
import torch

batch_size = 1
seq_len = 3
input_size = 2
hidden_size = 2
num_layers = 1
output_size = 2

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
for name, param in cell.named_parameters():  # 初始化参数
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)

# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])

inputs = torch.Tensor([[[1, 1]],
                       [[1, 1]],
                       [[2, 2]]])
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)

print('Input :', inputs[0])
print('hidden:', 0, 0)
print('Output:', liner(out[0]))
print('--------------------------------------')
print('Input :', inputs[1])
print('hidden:', out[0])
print('Output:', liner(out[1]))
print('--------------------------------------')
print('Input :', inputs[2])
print('hidden:', out[1])
print('Output:', liner(out[2]))

结果:
NNDL 作业8:RNN - 简单循环网络_第9张图片

4. 分析“二进制加法” 源代码(选做)

NNDL 作业8:RNN - 简单循环网络_第10张图片

# coding=gbk
import copy, numpy as np

np.random.seed(0)


#定义sigmoid函数
def sigmoid(x):
    output = 1 / (1 + np.exp(-x))
    return output


#定义sigmoid导数
def sigmoid_output_to_derivative(output):
    return output * (1 - output)


#训练数据的产生
int2binary = {}
binary_dim = 8 #定义二进制位的长度

largest_number = pow(2, binary_dim)#定义数据的最大值
binary = np.unpackbits(
    np.array([range(largest_number)], dtype=np.uint8).T, axis=1)#函数产生包装所有符合的二进制序列
for i in range(largest_number):#遍历从0-256的值
    int2binary[i] = binary[i]#对于每个整型值赋值二进制序列
print(int2binary)
# 产生输入变量
alpha = 0.1         #设置更新速度(学习率)
input_dim = 2       #输入维度大小
hidden_dim = 16     #隐藏层维度大小
output_dim = 1      #输出维度大小

# 随机产生网络权重
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1

#梯度初始值设置为0
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

#训练逻辑
for j in range(10000):

    # 产生一个简单的加法问题
    a_int = np.random.randint(largest_number / 2)  # 产生一个加法操作数
    a = int2binary[a_int]   # 找到二进制序列编码

    b_int = np.random.randint(largest_number / 2)  # 产生另一个加法操作数
    b = int2binary[b_int]   # 找到二进制序列编码

    # 计算正确值(标签值)
    c_int = a_int + b_int
    c = int2binary[c_int]   # 得到正确的结果序列

    # 设置存储器,存储中间值(记忆功能)
    d = np.zeros_like(c)

    overallError = 0        #设置误差

    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))

    # moving along the positions in the binary encoding
    for position in range(binary_dim):
        # 产生输入和输出
        X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T

        # 隐藏层计算
        layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))

        # 输出层
        layer_2 = sigmoid(np.dot(layer_1, synapse_1))
        # 计算差别
        layer_2_error = y - layer_2
        #计算每个梯度
        layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))
        #计算所有损失
        overallError += np.abs(layer_2_error[0])

        # 编码记忆的中间值
        d[binary_dim - position - 1] = np.round(layer_2[0][0])

        # 拷贝副本
        layer_1_values.append(copy.deepcopy(layer_1))

    future_layer_1_delta = np.zeros(hidden_dim)

    for position in range(binary_dim):
        X = np.array([[a[position], b[position]]])
        layer_1 = layer_1_values[-position - 1]
        prev_layer_1 = layer_1_values[-position - 2]

        # 输出层误差
        layer_2_delta = layer_2_deltas[-position - 1]
        # 隐藏层误差
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(
            synapse_1.T)) * sigmoid_output_to_derivative(layer_1)

        # 计算梯度
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)

        future_layer_1_delta = layer_1_delta
    #梯度下降
    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha
    #重新初始化
    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0

    # 打印训练过程
    if (j % 1000 == 0):
        print("Error:" + str(overallError))
        print("Pred:" + str(d))
        print("True:" + str(c))
        out = 0
        for index, x in enumerate(reversed(d)):
            out += x * pow(2, index)
        print(str(a_int) + " + " + str(b_int) + " = " + str(out))
        print("------------")

结果:
NNDL 作业8:RNN - 简单循环网络_第11张图片

二进制就是逢二进一。RNN主要学两件事,一个是前一位的进位,一个是当前位的加法操作。只告诉当前阶段和前一阶段的计算结果,让网络自己学习加法和进位操作。

首先产生一个简单的加法问题,然后依此产生两个加法操作数并找到它们对应的二进制序列编码(0-256分别对应00000000-11111111的编码序列)。依据上面计算正确值并得到正确的结果序列。对于中间值的处理,出于记忆功能设置存储器存储中间值(随机产生网络权重,设置随机种子保证每次产生的权重相同)。进行训练时产生的结果和正确的结果进行误差计算,从而更新随机网络权重的参数。

5. 实现“Character-Level Language Models”源代码(必做)

NNDL 作业8:RNN - 简单循环网络_第12张图片

# coding=gbk
import torch

# 使用RNN 有嵌入层和线性层
num_class = 4  # 4个类别
input_size = 4  # 输入维度是4
hidden_size = 8  # 隐层是8个维度
embedding_size = 10  # 嵌入到10维空间
batch_size = 1
num_layers = 2  # 两层的RNN
seq_len = 5  # 序列长度是5

# 准备数据
idx2char = ['e', 'h', 'l', 'o']  # 字典
x_data = [[1, 0, 2, 2, 3]]  # hello  维度(batch,seqlen)
y_data = [3, 1, 2, 3, 2]  # ohlol    维度 (batch*seqlen)

inputs = torch.LongTensor(x_data)
labels = torch.LongTensor(y_data)


# 构造模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.emb = torch.nn.Embedding(input_size, embedding_size)
        self.rnn = torch.nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers,
                                batch_first=True)
        self.fc = torch.nn.Linear(hidden_size, num_class)

    def forward(self, x):
        hidden = torch.zeros(num_layers, x.size(0), hidden_size)
        x = self.emb(x)  # (batch,seqlen,embeddingsize)
        x, _ = self.rnn(x, hidden)
        x = self.fc(x)
        return x.view(-1, num_class)  # 转变维2维矩阵,seq*batchsize*numclass -》((seq*batchsize),numclass)


model = Model()

# 损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.05)  # lr = 0.01学习的太慢

# 训练
for epoch in range(15):
    optimizer.zero_grad()
    outputs = model(inputs)  # inputs是(seq,Batchsize,Inputsize) outputs是(seq,Batchsize,Hiddensize)
    loss = criterion(outputs, labels)  # labels是(seq,batchsize,1)
    loss.backward()
    optimizer.step()

    _, idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print("Predicted:", ''.join([idx2char[x] for x in idx]), end='')
    print(",Epoch {}/15 loss={:.3f}".format(epoch + 1, loss.item()))

结果:
NNDL 作业8:RNN - 简单循环网络_第13张图片

翻译Character-Level Language Models 相关内容:

循环神经网络计算。那么这些东西是如何工作的呢?在核心,RNN有一个看似简单的API:它们接受一个输入向量,并给你一个输出向量。然而,至关重要的是,这个输出向量的内容不仅受到你刚刚输入的输入的影响,还受到你过去输入的整个输入历史的影响。作为一个类编写,RNN 的 API 由一个函数组成:x y step
在这里插入图片描述
RNN 类有一些内部状态,每次调用时都会更新。在最简单的情况下,此状态由单个隐藏向量组成。以下是 vanilla RNN 中 step 函数的实现:step h
NNDL 作业8:RNN - 简单循环网络_第14张图片
上面指定了香草 RNN 的前向传递。这个RNN的参数是三个矩阵。隐藏状态使用零向量初始化。该函数实现了将激活压缩到范围的非线性。简要注意这是如何工作的:tanh 中有两个项:一个基于先前的隐藏状态,另一个基于当前输入。在 numpyis 矩阵乘法中。两个中间体与加法相互作用,然后被tanh挤压到新的状态向量中。如果你对数学符号更熟悉,我们也可以把隐藏状态更新写成W_hh, W_xh, W_hyself.hnp.tanh[-1, 1]np.dotht=谭(WHhhht−1+Wx高xt),其中 tanh 是按元素应用的。

我们用随机数初始化 RNN 的矩阵,训练期间的大部分工作都用于寻找产生理想行为的矩阵,如使用一些损失函数测量的那样,该函数表达了您对您希望看到的输出类型的偏好响应您的输入序列。yx

深入。RNN是神经网络,如果你戴上深度学习的帽子并开始像煎饼一样堆叠模型,一切都单调地工作得更好(如果做得好)。例如,我们可以形成一个 2 层循环网络,如下所示:
在这里插入图片描述
换句话说,我们有两个独立的 RNN:一个 RNN 接收输入向量,第二个 RNN 接收第一个 RNN 的输出作为其输入。除了这些 RNN 都不知道也不关心 - 它们都只是进出的向量,以及在反向传播期间流经每个模块的一些梯度。

6. 分析“序列到序列”源代码(选做)

Seq2Seq 网络结构图:
NNDL 作业8:RNN - 简单循环网络_第15张图片
首先,从上面的图可以很明显的看出,Seq2Seq 需要对三个变量进行操作,这和之前我接触到的所有网络结构都不一样。我们把 Encoder 的输入称为 enc_input,Decoder 的输入称为 dec_input, Decoder 的输出称为 dec_output。

7. “编码器-解码器”的简单实现(必做)

NNDL 作业8:RNN - 简单循环网络_第16张图片

# coding=gbk
# code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# ?: Symbol that will fill in blank sequence if current batch data size is short than n_step

letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))  # 'man??', 'women'

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)


'''
enc_input_all: [6, n_step+1 (because of 'E'), n_class]
dec_input_all: [6, n_step+1 (because of 'S'), n_class]
dec_output_all: [6, n_step+1 (because of 'E')]
'''
enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        # enc_input(=input_batch): [batch_size, n_step+1, n_class]
        # dec_inpu(=output_batch): [batch_size, n_step+1, n_class]
        enc_input = enc_input.transpose(0, 1)  # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1)  # dec_input: [n_step+1, batch_size, n_class]

        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)  # model : [n_step+1, batch_size, n_class]
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
        enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
        # enc_input_batch : [batch_size, n_step+1, n_class]
        # dec_intput_batch : [batch_size, n_step+1, n_class]
        # dec_output_batch : [batch_size, n_step+1], not one-hot
        pred = model(enc_input_batch, h_0, dec_intput_batch)
        # pred : [n_step+1, batch_size, n_class]
        pred = pred.transpose(0, 1)  # [batch_size, n_step+1(=6), n_class]
        loss = 0
        for i in range(len(dec_output_batch)):
            # pred[i] : [n_step+1, n_class]
            # dec_output_batch[i] : [n_step+1]
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)
    # output : [n_step+1, batch_size, n_class]

    predict = output.data.max(2, keepdim=True)[1]  # select n_class dimension
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')


print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))

结果:
NNDL 作业8:RNN - 简单循环网络_第17张图片

总结

这次使用numpy实现了一个SRN,后在其基础上加入了激活函数。复习了RNN、seq2seq模型,学习了char-RNN模型以及对比了nn.RNN()和nn.RNNCell()的不同,并做了复现。分析了二进制加法的源代码并且实现。

参考

torch 循环神经网络torch.nn.RNN()和 torch.nn.RNNCell()
Seq2Seq 的 PyTorch 实现

你可能感兴趣的:(python,深度学习,人工智能)