- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- 【深度学习】卷积神经网络(CNN)原理
chaser&upper
深度学习神经网络卷积计算机视觉
【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总结1.卷积神经网络的组成定义卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 零基础起步:基于GpuGeek的文本生成模型实战
昊昊该干饭了
人工智能nlp深度学习gpu算力gru
在自然语言处理(NLP)领域,文本生成任务广泛应用于问答系统、智能摘要、内容创作等方向。本文将带领读者使用GpuGeek平台,从注册、上传数据到实例部署与训练,完整构建一个基于GPT2模型的文本生成系统,实战掌握AI模型的云端开发流程。目录一、GpuGeek平台使用流程详解1.注册与登录2.数据上传3.创建训练实例4.启动与使用实例5.关闭实例(手动&自动)二、文本生成实战任务:微调GPT-21.
- 大模型智能运维详解:技术架构、落地挑战与行业实践
FreeTools
FreeAiGuard运维架构人工智能运维开发科技
大模型智能运维详解:技术架构、落地挑战与行业实践作者:开源大模型智能运维FreeAiOps在数字化转型加速的背景下,企业IT系统复杂度呈指数级增长,传统运维模式面临效率低下、故障定位困难、成本高昂等瓶颈。大模型技术的出现为智能运维提供了突破性解决方案,其通过自然语言处理、多模态数据分析与自动化决策能力,正在重塑运维工作的底层逻辑。本文将从技术原理、落地挑战、行业实践三个维度,系统解析大模型智能运维
- AppML 案例简介
沐知全栈开发
开发语言
AppML案例简介引言AppML,全称为“应用程序机器学习”,是一种将机器学习技术与移动应用开发相结合的技术框架。它旨在简化移动应用的机器学习功能集成,使得开发者无需深入了解复杂的机器学习算法,即可将强大的AI功能引入他们的应用中。本文将简要介绍AppML的一些成功案例,展示其在不同领域的应用和价值。AppML案例一:健康监测应用案例概述:一款名为“HealthMate”的健康监测应用利用AppM
- 深度学习之分类手写数字的网络
newyork major
卷积神经网络CNN深度学习人工智能
面临的问题定义神经⽹络后,我们回到⼿写识别上来。我们可以把识别⼿写数字问题分成两个⼦问题:把包含许多数字的图像分成⼀系列单独的图像,每个包含单个数字;也就是把图像,分成6个单独的图像分类单独的数字我们将专注于编程解决第⼆个问题,分类单独的数字。这样是因为,⼀旦你有分类单独数字的有效⽅法,分割问题是不难解决的。⼀种⽅法是尝试不同的分割⽅式,⽤数字分类器对每⼀个切分⽚段打分;如果数字分类器对每⼀个⽚段
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 【Java】已解决java.sql.SQLRecoverableException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- 使用GPU进行机器学习训练时,如果GPU-Util计算核心满载工作但是显存占用较少,应该如何优化?
十子木
机器学习深度学习人工智能
是否需要优化?如果任务运行正常:无需干预(GPU设计本就是优先榨干计算性能)。如果出现卡顿或效率低下:增大batch_size:提升显存占用,减少数据搬运次数(但需避免OOM)。启用混合精度:torch.cuda.amp可减少显存占用并加速计算。检查CPU到GPU的数据流:避免频繁的小数据拷贝(如DataLoader的num_workers设置)。
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- Prompt Engineering 指南教程
班磊闯Andrea
PromptEngineering指南教程Prompt-Engineering-Guidedair-ai/Prompt-Engineering-Guide:是一个用于指导对话人工智能开发的文档。适合用于学习对话人工智能开发和自然语言处理。特点是提供了详细的指南和参考资料,涵盖了多种对话人工智能技术和算法,并且可以自定义学习路径和行为。项目地址:https://gitcode.com/gh_mirr
- SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
2023攻击和防御模型防御评估准确度、精确度和召回率:使用准确率来评估攻击模型在多类别封闭世界设置中的性能,但在二进制开放世界设置中使用精确率和召回率防御策略:(1)增加虚拟流量、(2)增加流量延迟、(3)将流量从一个流移到另一个流固定速率发送流量F,随机抽样以添加填充R,修改流量以产生与目标流量样本或模式的碰撞C,将流量分成多个流S,使用对抗性扰动来欺骗机器学习模型AF:(1)(2)BuFLO,
- 电子词典开源项目源代码完全解析
本文还有配套的精品资源,点击获取简介:电子词典作为数字化学习工具,已由传统硬件发展为可定制的开源软件应用。本源代码提供深入理解其工作机制的机会,包括用户界面设计、词典数据库、查询引擎、翻译算法等。源代码通常由主流编程语言编写,涉及到数据结构与算法、UI设计、数据库管理、自然语言处理、本地化与多语言支持、版本控制、软件工程、API接口以及开源社区的协作和交流。1.电子词典工作原理和定制功能电子词典工
- I2C子系统面试指南:基础原理、经典问答与答题技巧全解析
嵌入式Jerry
Linux+内核面试职场和发展linux服务器运维单片机java
I2C子系统面试指南:基础原理、经典问答与答题技巧全解析关于本篇博文,B站视屏讲解链接,点击进入深度学习一、引言:为什么要深入掌握I2C子系统?在嵌入式、驱动开发、BSP移植、甚至AIoT行业,I2C几乎是绕不开的“基础功”。不管你是应聘Linux驱动开发、嵌入式软件工程师、SoC底层支持,还是BSP/系统调试,I2C的核心架构和调试经验都是面试高频关注点。掌握I2C子系统,关键不止是能写驱动,更
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- Python知识点:如何使用Nvidia Jetson与Python进行边缘计算
杰哥在此
Python系列python边缘计算开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用NvidiaJetson与Python进行边缘计算NvidiaJetson平台是专为边缘计算设计的一系列AI计算机,它们能够处理和分析来自物联网(IoT)设备和边缘节点的数据。这些设备小巧、节能且功能强大,非常适合用于执行机器学习、计算机视觉和自然语言处理等任务。Python
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- AI人工智能领域:Bard的崛起之路
AIGC应用创新大全
人工智能bardai
AI人工智能领域:Bard的崛起之路关键词:Bard、GoogleAI、大语言模型、对话式AI、自然语言处理、生成式AI、AI竞争摘要:本文深入探讨GoogleBard的发展历程、技术架构及其在AI领域的地位。我们将从Bard的诞生背景开始,分析其核心技术原理,比较与其他大语言模型的异同,并通过实际案例展示其应用场景。最后展望Bard的未来发展方向及面临的挑战。背景介绍目的和范围本文旨在全面解析G
- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- 脑机新手指南(十五)speechBCI 项目新手入门指南(上):项目概述、代码结构与环境搭建
Brduino脑机接口技术答疑
脑机新手指南python脑机接口新手入门
一、引言在脑机接口(BCI)领域,语音相关的研究正不断取得突破。speechBCI项目为语音脑机接口的研究提供了一个优秀的开源代码库。该项目与前沿的学术研究、丰富的数据集以及具有挑战性的机器学习竞赛紧密相连。本指南将分上下两篇,详细引导新手深入了解和使用speechBCI项目。二、项目概述speechBCI项目不仅仅是一个代码集合,它背后有着深厚的学术背景和实际应用价值。它与一篇发表在[Natur
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- 什么是神经网络和机器学习?【云驻共创】
一键难忘
人工智能机器学习深度学习神经网络网络
什么是神经网络和机器学习?一.背景在当今数字化浪潮中,神经网络和机器学习已成为科技领域的中流砥柱。它们作为人工智能的支柱,推动了自动化、智能化和数据驱动决策的进步。然而,对于初学者和专业人士来说,理解神经网络和机器学习的本质是至关重要的。在本文中,我们将深入探讨这两个概念的内涵、工作原理以及彼此之间的联系。二.神经网络和机器学习简介神经网络和机器学习都是人工智能领域中的重要概念,它们通常用于解决各
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- python学智能算法(十六)|机器学习支持向量机简单示例
西猫雷婶
python学习笔记人工智能机器学习机器学习python支持向量机人工智能深度学习
【1】引言前序学习了逻辑回归等算法,相关文章链接包括且不限于:python学智能算法(十)|机器学习逻辑回归(Logistic回归)_逻辑回归算法python-CSDN博客python学智能算法(十一)|机器学习逻辑回归深入(Logistic回归)_np.random.logistic()-CSDN博客今天在此基础上更进一步,学习支持向量机,为实现较好地理解,先解读一个简单算例。【2】代码解读【2
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p