net slim 分割_PaddleSeg是基于PaddlePaddle开发的语义分割库,覆盖了DeepLabv3+, U-Net, ICNet三类主流的分割模型...

PaddleSeg

简介

PaddleSeg是基于PaddlePaddle开发的端到端图像分割开发套件,覆盖了DeepLabv3+, U-Net, ICNet, PSPNet, HRNet, Fast-SCNN等主流分割网络。通过模块化的设计,以配置化方式驱动模型组合,帮助开发者更便捷地完成从训练到部署的全流程图像分割应用。

特点

丰富的数据增强

基于百度视觉技术部的实际业务经验,内置10+种数据增强策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。

模块化设计

支持U-Net, DeepLabv3+, ICNet, PSPNet, HRNet, Fast-SCNN六种主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求;选择不同的损失函数如Dice Loss, Lovasz Loss等方式可以强化小目标和不均衡样本场景下的分割精度。

高性能

PaddleSeg支持多进程I/O、多卡并行等训练加速策略,结合飞桨核心框架的显存优化功能,可大幅度减少分割模型的显存开销,让开发者更低成本、更高效地完成图像分割训练。

工业级部署

全面提供服务端和移动端的工业级部署能力,依托飞桨高性能推理引擎和高性能图像处理实现,开发者可以轻松完成高性能的分割模型部署和集成。通过Paddle-Lite,可以在移动设备或者嵌入式设备上完成轻量级、高性能的人像分割模型部署。

产业实践案例

PaddleSeg提供丰富地产业实践案例,如人像分割、工业表计检测、遥感分割、人体解析,工业质检等产业实践案例,助力开发者更便捷地落地图像分割技术。

安装

1. 安装PaddlePaddle

版本要求

PaddlePaddle >= 1.7.0

Python >= 3.5+

由于图像分割模型计算开销大,推荐在GPU版本的PaddlePaddle下使用PaddleSeg.

pip install -U paddlepaddle-gpu

同时请保证您参考NVIDIA官网,已经正确配置和安装了显卡驱动,CUDA 9,cuDNN 7.3,NCCL2等依赖,其他更加详细的安装信息请参考:PaddlePaddle安装说明。

2. 下载PaddleSeg代码

git clone https://github.com/PaddlePaddle/PaddleSeg

3. 安装PaddleSeg依赖

通过以下命令安装python包依赖,请确保在该分支上至少执行过一次以下命令:

cd PaddleSeg

pip install -r requirements.txt

使用教程

我们提供了一系列的使用教程,来说明如何使用PaddleSeg完成语义分割模型的训练、评估、部署。

这一系列的文档被分为快速入门、基础功能、预测部署、高级功能四个部分,四个教程由浅至深地介绍PaddleSeg的设计思路和使用方法。

快速入门

基础功能

预测部署

高级功能

在线体验

我们在AI Studio平台上提供了在线体验的教程,欢迎体验:

在线教程

链接

快速开始

U-Net图像分割

DeepLabv3+图像分割

工业质检(零件瑕疵检测)

人像分割

PaddleSeg特色垂类模型

FAQ

Q: 安装requirements.txt指定的依赖包时,部分包提示找不到?

A: 可能是pip源的问题,这种情况下建议切换为官方源,或者通过pip install -r requirements.txt -i指定其他源地址。

Q:图像分割的数据增强如何配置,Unpadding, StepScaling, RangeScaling的原理是什么?

A: 更详细数据增强文档可以参考数据增强

Q: 训练时因为某些原因中断了,如何恢复训练?

A: 启动训练脚本时通过命令行覆盖TRAIN.RESUME_MODEL_DIR配置为模型checkpoint目录即可, 以下代码示例第100轮重新恢复训练:

python pdseg/train.py --cfg xxx.yaml TRAIN.RESUME_MODEL_DIR /PATH/TO/MODEL_CKPT/100

Q: 预测时图片过大,导致显存不足如何处理?

A: 降低Batch size,使用Group Norm策略;请注意训练过程中当DEFAULT_NORM_TYPE选择bn时,为了Batch Norm计算稳定性,batch size需要满足>=2

交流与反馈

欢迎您通过Github Issues来提交问题、报告与建议

微信公众号:飞桨PaddlePaddle

QQ群: 703252161

     

微信公众号                官方技术交流QQ群

更新日志

2020.05.12

v0.5.0

全面升级HumanSeg人像分割模型,新增超轻量级人像分割模型HumanSeg-lite支持移动端实时人像分割处理,并提供基于光流的视频分割后处理提升分割流畅性。

新增气象遥感分割方案,支持积雪识别、云检测等气象遥感场景。

新增Lovasz Loss,解决数据类别不均衡问题。

使用VisualDL 2.0作为训练可视化工具

2020.02.25

v0.4.0

新增适用于实时场景且不需要预训练模型的分割网络Fast-SCNN,提供基于Cityscapes的预训练模型1个

新增LaneNet车道线检测网络,提供预训练模型一个

新增基于PaddleSlim的分割库压缩策略(量化, 蒸馏, 剪枝, 搜索)

2019.12.15

v0.3.0

新增HRNet分割网络,提供基于cityscapes和ImageNet的预训练模型8个

支持使用伪彩色标签进行训练/评估/预测,提升训练体验,并提供将灰度标注图转为伪彩色标注图的脚本

新增学习率warmup功能,支持与不同的学习率Decay策略配合使用

新增图像归一化操作的GPU化实现,进一步提升预测速度。

新增Python部署方案,更低成本完成工业级部署。

新增Paddle-Lite移动端部署方案,支持人像分割模型的移动端部署。

新增不同分割模型的预测性能数据Benchmark, 便于开发者提供模型选型性能参考。

2019.11.04

v0.2.0

新增PSPNet分割网络,提供基于COCO和cityscapes数据集的预训练模型4个。

新增Dice Loss、BCE Loss以及组合Loss配置,支持样本不均衡场景下的模型优化。

支持FP16混合精度训练以及动态Loss Scaling,在不损耗精度的情况下,训练速度提升30%+。

支持PaddlePaddle多卡多进程训练,多卡训练时训练速度提升15%+。

发布基于UNet的工业标记表盘分割模型。

2019.09.10

v0.1.0

PaddleSeg分割库初始版本发布,包含DeepLabv3+, U-Net, ICNet三类分割模型, 其中DeepLabv3+支持Xception, MobileNet v2两种可调节的骨干网络。

CVPR19 LIP人体部件分割比赛冠军预测模型发布ACE2P。

预置基于DeepLabv3+网络的人像分割和车道线分割预测模型发布。

贡献代码

我们非常欢迎您为PaddleSeg贡献代码或者提供使用建议。如果您可以修复某个issue或者增加一个新功能,欢迎给我们提交Pull Requests.

你可能感兴趣的:(net,slim,分割)