2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释

论文地址:D2Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第1张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第2张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第3张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第4张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第5张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第6张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第7张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第8张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第9张图片
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释_第10张图片

参考资料

[1] 目标检测之Deformable Convolutional Networks(2017):https://blog.csdn.net/P_LarT/article/details/85042264
[2] 一维卷积(1D-CNN)、二维卷积(2D-CNN)、三维卷积(3D-CNN):https://blog.csdn.net/yizhishuixiong/article/details/106566730
[3] Schmidt C, Athar A, Mahadevan S, et al. D2Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 1200-1209.
[4] Mahadevan S, Athar A, Ošep A, et al. Making a case for 3d convolutions for object segmentation in videos[J]. arXiv preprint arXiv:2008.11516, 2020.
[5] Wu Y, He K. Group normalization[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.

你可能感兴趣的:(视频对象分割笔记,cnn,深度学习,神经网络,计算机视觉)