Python K-means算法分析客户数据

import pandas as pd
import matplotlib.pyplot as plt
#引入sklearn框架,导入K均值聚类算法
from sklearn.cluster import KMeans

inputfile = r'C:/Users/Administrator/Desktop/transformdata.xls' #待聚类的数据文件

outputfile=r'C:/Users/Administrator/Desktop/data_type.xls'

#读取数据并进行聚类分析
data = pd.read_excel(inputfile) #读取数据

#利用K-Means聚类算法对客户数据进行客户分群,聚成4类

k = 4                       #需要进行的聚类类别数

iteration = 500

kmodel = KMeans(n_clusters = k,max_iter=iteration)

kmodel.fit(data) #训练模型

r1 = pd.Series(kmodel.labels_).value_counts()

r2 = pd.DataFrame(kmodel.cluster_centers_)

r = pd.concat([r2, r1],axis = 1)

r.columns=list(data.columns) + [u'聚类数量']

r3 = pd.Series(kmodel.labels_, index=data.index)

r = pd.concat([data, r3], axis = 1)

r.columns = list(data.columns) + [u'聚类类别']

r.to_excel(outputfile)

kmodel.cluster_centers_

kmodel.labels_

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

for i in range(k):

  cls=data[r[u'聚类类别']==i]

  cls.plot(kind = 'kde', linewidth = 2, subplots = True, sharex = False)

  plt.suptitle('客户群 = %d; 聚类数量 = %d' %(i, r1[i]))

plt.legend()

plt.show()




数据在:适用于数据分析和数据挖掘的客户数据-数据集文档类资源-CSDN下载

你可能感兴趣的:(python,数据分析,数据挖掘,k-means)