RuntimeError: Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor)

将卷积运算放到初始化中,与模型初始化一块加载到cuda
原来代码:

class layer(nn.Module):
    '''
    x: input features with shape [N,C,H,W]
    gamma, b: parameters of mapping function
    '''
    def __init__(self):
        super(layer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, gamma=2, b=1):
        n,channel,h,w = x.size()
        t = int(abs((math.log(channel, 2) + b) / gamma))
        k = t if t % 2 else t + 1
        conv = nn.Conv1d(1, 1, kernel_size=k, padding=int(k/2), bias=False)

        y = self.avg_pool(x)
        y = conv(y.squeeze(-1).transpose(-1, -2))
        y = y.transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)

修改后:

class layer(nn.Module):
    '''
    x: input features with shape [N,C,H,W]
    gamma, b: parameters of mapping function
    '''
    def __init__(self, channel, gamma=2, b=1):
        super(layer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        t = int(abs((math.log(channel, 2) + b) / gamma))
        k = t if t % 2 else t + 1
        self.conv = nn.Conv1d(1, 1, kernel_size=k, padding=int(k/2), bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):

        y = self.avg_pool(x)
        y = self.conv(y.squeeze(-1).transpose(-1, -2))
        y = y.transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)

你可能感兴趣的:(深度学习,行人重识别,Python,python,开发语言)