EM算法也称期望最大化(Expectation-Maximum,简称EM)算法。
它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM)等等。
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,
所以算法被称为EM算法(Expectation-Maximization Algorithm)。
EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster、Laird和Rubin三人于1977年所做的文章《Maximum likelihood from incomplete data via the EM algorithm》中给出了详细的阐述。其基本思想是:
EM算法计算流程:
想清晰的了解EM算法,我们需要知道一个基础知识:
假如我们需要调查学校的男生和女生的身高分布 ,我们抽取100个男生和100个女生,将他们按照性别划分为两组。
然后,统计抽样得到100个男生的身高数据和100个女生的身高数据。
如果我们知道他们的身高服从正态分布,但是这个分布的均值 μ \mu μ 和方差 δ 2 \delta^2 δ2 是不知道,这两个参数就是我们需要估计的。
问题:我们知道样本所服从的概率分布模型和一些样本,我们需要求解该模型的参数.
根据已知条件,通过极大似然估计,求出未知参数。
总的来说:极大似然估计就是用来估计模型参数的统计学方法。
问题数学化:
这个概率反映了在概率密度函数的参数是θ时,得到X这组样本的概率。
我们需要找到一个参数θ,使得抽到X这组样本的概率最大,也就是说需要其对应的似然函数L(θ)最大。
多数情况下,我们是根据已知条件来推算结果,而极大似然估计是已知结果,寻求使该结果出现的可能性最大的条件,以此作为估计值。
我们目前有100个男生和100个女生的身高,但是我们不知道这200个数据中哪个是男生的身高,哪个是女生的身高,即抽取得到的每个样本都不知道是从哪个分布中抽取的。
这个时候,对于每个样本,就有两个未知量需要估计:
(1)这个身高数据是来自于男生数据集合还是来自于女生?
(2)男生、女生身高数据集的正态分布的参数分别是多少?
具体问题如下图:
对于具体的身高问题使用EM算法求解步骤如下:
(1)初始化参数:先初始化男生身高的正态分布的参数:如均值=1.65,方差=0.15;
(2)计算分布:计算每一个人更可能属于男生分布或者女生分布;
(3)重新估计参数:通过分为男生的n个人来重新估计男生身高分布的参数(最大似然估计),女生分布也按照相同的方式估计出来,更新分布。
(4)这时候两个分布的概率也变了,然后重复步骤(1)至(3),直到参数不发生变化为止。
输入:
算法步骤:
1)随机初始化模型参数θ的初值 θ 0 \theta_0 θ0。
2) j = 1 , 2 , . . . , J j=1,2,...,J j=1,2,...,J开始EM算法迭代:
输出:模型参数θ。
假设现在有两枚硬币1和2,,随机抛掷后正面朝上概率分别为P1,P2。为了估计这两个概率,做实验,每次取一枚硬币,连掷5下,记录下结果,如下:
可以很容易地估计出P1和P2,如下:
P1 = (3+1+2)/ 15 = 0.4
P2= (2+3)/10 = 0.5
到这里,一切似乎很美好,下面我们加大难度。
还是上面的问题,现在我们抹去每轮投掷时使用的硬币标记,如下:
显然,此时我们多了一个隐变量z,可以把它认为是一个5维的向量(z1,z2,z3,z4,z5),代表每次投掷时所使用的硬币,比如z1,就代表第一轮投掷时使用的硬币是1还是2。但是,这个变量z不知道,就无法去估计P1和P2,所以,我们必须先估计出z,然后才能进一步估计P1和P2。
但要估计z,我们又得知道P1和P2,这样我们才能用最大似然概率法则去估计z,这不是鸡生蛋和蛋生鸡的问题吗,如何破?
答案就是先随机初始化一个P1和P2,用它来估计z,然后基于z,还是按照最大似然概率法则去估计新的P1和P2,如果新的P1和P2和我们初始化的P1和P2一样,请问这说明了什么?
这说明我们初始化的P1和P2是一个相当靠谱的估计!
就是说,我们初始化的P1和P2,按照最大似然概率就可以估计出z,然后基于z,按照最大似然概率可以反过来估计出P1和P2,当与我们初始化的P1和P2一样时,说明是P1和P2很有可能就是真实的值。这里面包含了两个交互的最大似然估计。
如果新估计出来的P1和P2和我们初始化的值差别很大,怎么办呢?就是继续用新的P1和P2迭代,直至收敛。
这就是下面的EM初级版。
我们不妨这样,先随便给P1和P2赋一个值,比如:
然后,我们看看第一轮抛掷最可能是哪个硬币。
然后依次求出其他4轮中的相应概率。做成表格如下:
按照最大似然法则:
我们就把上面的值作为z的估计值。然后按照最大似然概率法则来估计新的P1和P2。
设想我们是全知的神,知道每轮抛掷时的硬币就是如本文第001部分标示的那样,那么,P1和P2的最大似然估计就是0.4和0.5(下文中将这两个值称为P1和P2的真实值)。那么对比下我们初始化的P1和P2和新估计出的P1和P2:
看到没?我们估计的P1和P2相比于它们的初始值,更接近它们的真实值了!
可以期待,我们继续按照上面的思路,用估计出的P1和P2再来估计z,再用z来估计新的P1和P2,反复迭代下去,就可以最终得到P1 = 0.4,P2=0.5,此时无论怎样迭代,P1和P2的值都会保持0.4和0.5不变,于是乎,我们就找到了P1和P2的最大似然估计。
这里有两个问题:
下面,我们思考下,上面的方法还有没有改进的余地?
我们是用最大似然概率法则估计出的z值,然后再用z值按照最大似然概率法则估计新的P1和P2。也就是说,我们使用了一个最可能的z值,而不是所有可能的z值。
如果考虑所有可能的z值,对每一个z值都估计出一个新的P1和P2,将每一个z值概率大小作为权重,将所有新的P1和P2分别加权相加,这样的P1和P2应该会更好一些。
所有的z值有多少个呢?
显然,有 2 5 = 32 2^5=32 25=32种,需要我们进行32次估值??
不需要,我们可以用期望来简化运算。
利用上面这个表,我们可以算出每轮抛掷中使用硬币1或者使用硬币2的概率。
比如第1轮,使用硬币1的概率是:
使用硬币2的概率是1-0.14=0.86
依次可以算出其他4轮的概率,如下:
上表中的右两列表示期望值。看第一行,0.86表示,从期望的角度看,这轮抛掷使用硬币2的概率是0.86。相比于前面的方法,我们按照最大似然概率,直接将第1轮估计为用的硬币2,此时的我们更加谨慎,我们只说,有0.14的概率是硬币1,有0.86的概率是硬币2,不再是非此即彼。这样我们在估计P1或者P2时,就可以用上全部的数据,而不是部分的数据,显然这样会更好一些。
这一步,我们实际上是估计出了z的概率分布,这步被称作E步。
结合下表:
以P1估计为例,第1轮的3正2反相当于
依次算出其他四轮,列表如下:
P1代表使用硬币1正面朝上的概率
可以看到,改变了z值的估计方法后,新估计出的P1要更加接近0.4。原因就是我们使用了所有抛掷的数据,而不是之前只使用了部分的数据。
这步中,我们根据E步中求出的z的概率分布,依据最大似然概率法则去估计P1和P2,被称作M步。
EM算法的实现思路: