本人遇到的问题是在训练是正常,一到验证时就会出现cuda error: out of memory的问题
1.首先就是考虑减少batch_size和num_worker,对于我的情况不奏效
2.然后找到pin_memory发现是设置的True,改为false,仍旧不管用
3.包括把
# Empty GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
放到报错位置的前后,不奏效
4.后来再聚焦问题关键,是一到验证就会出问题,所以专门查攻略,我初步怀疑是因为验证没有参与反向传播,梯度累积,内存爆了,但当时代码中有with torch.no_grad(): ,所以并没有发现关键,知道看到别人里面 forword是放在with torch.no_grad()后面的,所以最后
with torch.no_grad():
# Forward pass
loss, np_probs, hv_logits = self.forward(images, targets)
问题解决!