本次作业是一个图像识别任务,要将所给的食物图片分类,共有十一种,图片对应的食物编号在图片名字的前缀上。本此作业需要用到的是卷积神经网络cnn,以pytorch实现,由于任务较简单,所以使用的网络结构并不复杂。
先总结一下对数据的处理步骤。
读取文件,提取标签
def readfile(path, label):
# label 是一個 boolean variable,代表需不需要回傳 y 值
image_dir = sorted(os.listdir(path))
x = np.zeros((len(image_dir), 128, 128, 3), dtype=np.uint8)
y = np.zeros((len(image_dir)), dtype=np.uint8)
for i, file in enumerate(image_dir):
img = cv2.imread(os.path.join(path, file))
x[i, :, :] = cv2.resize(img,(128, 128))
if label:
y[i] = int(file.split("_")[0])
if label:
return x, y
else:
return x
数据增强,对图片随机翻转,旋转。
train_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomHorizontalFlip(), #隨機將圖片水平翻轉
transforms.RandomRotation(15), #隨機旋轉圖片
transforms.ToTensor(), #將圖片轉成 Tensor,並把數值normalize到[0,1](data normalization)
])
#testing 時不需做 data augmentation
test_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
])
在使用pytorch训练时候,我们会经常使用 torch.utils.data 的 Dataset 及 DataLoader来包装data,
这其中要包含__len__ 及和__ getitem__,__ len__ 返回数据集的大小,__ getitem__则返回我们所需要的数据形式。
class ImgDataset(Dataset):
def __init__(self, x, y=None, transform=None):
self.x = x
# label is required to be a LongTensor
self.y = y
if y is not None:
self.y = torch.LongTensor(y)
self.transform = transform
def __len__(self):
return len(self.x)
def __getitem__(self, index):
X = self.x[index]
if self.transform is not None:
X = self.transform(X)
if self.y is not None:
Y = self.y[index]
return X, Y
else:
return X
参考答案使用pytorch来构建模型,比较方便。从代码来看,搭建的模型也不复杂。基本就是对图片反复池化,卷积。
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
#torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
#torch.nn.MaxPool2d(kernel_size, stride, padding)
#input 維度 [3, 128, 128]
self.cnn = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1), # [64, 128, 128]
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [64, 64, 64]
nn.Conv2d(64, 128, 3, 1, 1), # [128, 64, 64]
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [128, 32, 32]
nn.Conv2d(128, 256, 3, 1, 1), # [256, 32, 32]
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [256, 16, 16]
nn.Conv2d(256, 512, 3, 1, 1), # [512, 16, 16]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 8, 8]
nn.Conv2d(512, 512, 3, 1, 1), # [512, 8, 8]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 4, 4]
)
self.fc = nn.Sequential(
nn.Linear(512*4*4, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512, 11)
)
def forward(self, x):
out = self.cnn(x)
out = out.view(out.size()[0], -1)
return self.fc(out)
对这个模型进行可视化(单张图片的卷积过程)。
从图像可知,模型对原图片进行了一系列的卷积与池化,最终得到了结果。
最后训练的过程不多赘述。
model_best = Classifier().cuda()
loss = nn.CrossEntropyLoss() # 因為是 classification task,所以 loss 使用 CrossEntropyLoss
optimizer = torch.optim.Adam(model_best.parameters(), lr=0.001) # optimizer 使用 Adam
num_epoch = 30
for epoch in range(num_epoch):
epoch_start_time = time.time()
train_acc = 0.0
train_loss = 0.0
model_best.train()
for i, data in enumerate(train_val_loader):
optimizer.zero_grad()
train_pred = model_best(data[0].cuda())
batch_loss = loss(train_pred, data[1].cuda())
batch_loss.backward()
optimizer.step()
train_acc += np.sum(np.argmax(train_pred.cpu().data.numpy(), axis=1) == data[1].numpy())
train_loss += batch_loss.item()
#將結果 print 出來
print('[%03d/%03d] %2.2f sec(s) Train Acc: %3.6f Loss: %3.6f' % \
(epoch + 1, num_epoch, time.time()-epoch_start_time, \
train_acc/train_val_set.__len__(), train_loss/train_val_set.__len__()))