- Spring框架在Java企业级应用中的应用分析
向哆哆
Java入门到精通javaspring后端
Java在移动应用开发中的优势与挑战Java作为一门历史悠久且功能强大的编程语言,在移动应用开发中一直占据着重要地位,尤其是在安卓平台的应用开发上,Java是主要的开发语言。随着技术的发展,尤其是Kotlin的崛起,Java在移动应用中的角色发生了一些变化,但它依旧具有许多独特的优势,尤其是在企业级应用和维护现有项目中。本文将从多个角度探讨Java在移动应用开发中的优势与挑战,并提供相关的代码示例
- 《神经网络与深度学习》(邱锡鹏) 内容概要【不含数学推导】
code_stream
#机器学习神经网络
第1章绪论基本概念:介绍了人工智能的发展历程及不同阶段的特点,如符号主义、连接主义、行为主义等。还阐述了深度学习在人工智能领域的重要地位和发展现状,以及其在图像、语音、自然语言处理等多个领域的成功应用。术语解释人工智能:旨在让机器模拟人类智能的技术和科学。深度学习:一种基于对数据进行表征学习的方法,通过构建具有很多层的神经网络模型,自动从大量数据中学习复杂的模式和特征。第2章机器学习概述基本概念:
- BP 神经网络在考古数据分析中的应用
fanxbl957
人工智能理论与实践神经网络数据分析人工智能
BP神经网络在考古数据分析中的应用摘要:本文深入探讨了BP神经网络在考古数据分析领域的应用。首先阐述了考古数据分析的重要性以及传统分析方法的局限性。随后详细介绍了BP神经网络的结构、原理与训练算法。通过丰富的代码示例展示了如何运用BP神经网络进行考古文物的分类鉴定、年代预测以及遗址空间分布分析等任务,涵盖数据预处理、网络构建、模型训练与评估等关键环节。分析了该应用的优势与局限性,并对其在考古数据分
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- 线性回归理论
狂踹瘸子那条好脚
python
###线性回归与Softmax回归####线性回归线性回归是一种用于估计连续值的回归方法。它的应用场景非常广泛,比如在房地产市场中,参观一个房子后,我们可以通过线性回归模型来估计房子的价格,从而决定出价。线性回归的核心思想是通过训练数据来学习参数,使得模型的预测值与真实值之间的差异最小化。在神经网络中,线性回归可以看作是一个单层神经网络。通过损失函数来衡量预测值与真实值之间的差异,常用的损失函数包
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- muzero 算法原理
战神哥
Muzero算法是一种通用的强化学习算法,它可以在没有预先设定策略的情况下进行学习。它通过模拟整个游戏进程来自我学习,并通过回报函数来评估每一步的决策。Muzero算法的核心部分是一个叫做模型的神经网络,它会对游戏的状态进行预测,预测未来的游戏状态。另一部分是策略网络,它会根据当前状态预测每一步的最优决策。Muzero算法通过不断地训练模型和策略网络,来提高它们的准确性,从而使得机器学到了如何玩游
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 用 TensorFlow 搭建简单的手写数字识别模型
lozhyf
工作面试学习tensorflow人工智能python
一、引言手写数字识别是机器学习领域中一个经典且基础的问题,它在很多实际场景中都有广泛的应用,比如邮政系统中的邮件分拣、银行支票金额识别等。TensorFlow是一个强大的开源机器学习框架,由Google开发并维护,它提供了丰富的工具和接口,能帮助我们快速搭建和训练深度学习模型。在这篇博客中,我们将使用TensorFlow构建一个简单的神经网络模型,用于识别手写数字。二、环境准备在开始之前,你需要安
- 训练与优化
钰见梵星
小土堆PyTorch深度学习深度学习pytorch人工智能
训练与优化损失函数与反向传播损失函数能够衡量神经网络输出与目标值之间的误差,同时为反向传播提供依据,计算梯度来优化网络中的参数。torch.nn.L1Loss计算所有预测值与真实值之间的绝对差。参数为reduction:'none':不对损失进行任何求和或平均,返回每个元素的损失。'mean':对损失进行平均,默认选项。'sum':对所有样本的损失进行求和。importtorchinput=tor
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- Python从0到100(四):Python中的运算符介绍(补充)
是Dream呀
pythonjava数据库
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Python从0到100(三十五):beautifulsoup的学习
是Dream呀
Dream的茶话会pythonbeautifulsoup学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 从零到入门:人工智能学习路径全解析
这题有点难度
人工智能学习
一、打破迷雾:重新认识人工智能人工智能(AI)早已不再是科幻电影中的专属概念,而是渗透到我们生活的方方面面。从手机里的语音助手到电商平台的推荐系统,从自动驾驶到医疗影像分析,AI技术正在重塑人类社会的运行方式。对于初学者而言,建立正确的认知框架至关重要:1.技术图谱解析:机器学习(ML):AI的核心驱动力,使计算机具备从数据中学习的能力深度学习(DL):基于神经网络的进阶技术,擅长处理图像、语音等
- 从代码到专利:如何用自注意力机制实现高效序列转换?——深度解析Google的Transformer架构
CodePatentMaster
transformer深度学习人工智能AIGC架构
本文将从五个方面【技术问题、技术手段、技术效果、代码实现逻辑和工程落地建议】解读以下专利。US201816021971A,ATTENTION-BASEDSEQUENCETRANSDUCTIONNEURALNETWORKS一、技术问题:为什么需要自注意力机制?在传统的序列转换任务(如机器翻译、语音识别等)中,循环神经网络(RNN)和卷积神经网络(CNN)是常用的模型架构。然而,这些模型存在以下问题:
- ColD Fusion,分布式多任务微调的协同 “密码”
人工智能
ColDFusion,分布式多任务微调的协同“密码”发布时间:2025-02-19近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一知乎【柏企】公众号【柏企科技说】【柏企阅文】在预训练模型的基础上进行改进,有望提升所有基于它微调的模型性能。然而,
- 【TVM教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在if__name__=="__main__":代码块中。impor
- 如何用matlab进行部分式展开_[转载]用MATLAB进行部分分式展开
麦克羊
为了方便LAPLACE反变换,先对F(s)进行部分分式展开。根据F(s)分为具有不同极点的部分分式展开和具有多重极点的部分分式展开。分别讨论。不同极点的部分分式展开:F(s)=B(s)/A(s)=num/den=(b0*s^n+b1*s^(n-1)+...+bn)/(s^n+a1*s^(n-1)+...an)在matlab行向量中,num和den分别表示传递函数分子和分母的系数num=[b0b1.
- 【深度学习入门:基于python的理论与实现读书笔记】第五章误差反向传播法
Bin二叉
深度学习python人工智能
目录摘要第五章误差反向传播法简单层的实现乘法层的实现加法层的实现激活函数层的实现ReLU层Sigmoid层Affine层和Softmax层的实现Affine层Softmax-with-Loss层误差反向传播法的实现摘要该文章简要介绍了神经网络的误差反向传播法,省去了大量的推理过程,重点讲述了神经网络误差反向传播法的代码实现。第五章误差反向传播法反向传播就是从后到前局部计算偏导数并将其与从上游传来的
- 《第2章 位置与姿态描述》代码
神笔馬良
人工智能
最近在学习《视觉伺服/机器人学、机器视觉与控制》,发现书中的代码运行不通顺,原因可能是matlab升级后,部分函数的参数变化了。所以需要记录错误的代码和正确的代码。第一处:为了使上述推导更形象具体,下面我们将使用MATLAB工具箱展示一些具体数值化的例子。首先用函数se2创建一个齐次变换:错误代码T1=se2(1,2,30*pi/180)报错提示:错误使用matlabshared.spatialm
- 2020年物联网白皮书深度解析
你这人真狗
本文还有配套的精品资源,点击获取简介:《物联网白皮书(2020年)》深入分析了物联网的发展核心问题、趋势和挑战。物联网通过网络将各种设备连接起来,面临数据安全、设备连接标准化及海量数据处理等关键问题。该白皮书针对技术成熟度、市场渗透率及法规政策提出了策略建议,并对未来展望包括新技术应用和行业影响进行了预测。1.物联网核心问题分析1.1物联网定义与核心技术物联网(IoT)是通过信息传感设备,按照约定
- iot架构 mqtt netty_一个关于小程序Iot的具体实现(MQTT版)
Alfred Cheng
iot架构mqttnetty
前言Iot,这个名词应该很多人都听过了吧,即大数据、Ai等兴起后也紧跟着研发大潮流的到来,即物联网。传统简单的说就是智能化、程序化的控制硬件设施,大家最容易想到的应该是智能家居,通过一个App或者遥控进行对家具设置的远程控制。而今天要说的是人与物之间的通信控制,且通过互联网产品来执行人的命令,而机器进行应答。竞品说到小程序控制硬件,大家应该立马想到什么产品呢?某拜、某FO、售货机等等,他们的架构上
- PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
木觞清
pytorchtensorflow人工智能
在机器学习和深度学习领域,PyTorch和TensorFlow是最流行的两个框架。它们各有特点,适用于不同的开发需求和场景。本文将详细对比这两个框架,帮助你根据项目需求选择最合适的工具。一、概述PyTorch和TensorFlow都是深度学习框架,它们为构建、训练和部署神经网络提供了强大的工具。尽管它们的最终目标相同,但其设计哲学和实现方式有所不同。PyTorch:由Facebook的人工智能研究
- 欢迎来到 《探索HarmonyOS(鸿蒙应用开发)入门到实战》专栏!
沉默的闪客
harmonyos华为
各位小伙伴国产纯血鸿蒙系统来了。了解鸿蒙技术的小伙伴都知道,鸿蒙技术一直在持续更新,越来越多的鸿蒙开发者都开始投入鸿蒙技术的开发。为了更容易和快速的入手鸿蒙开发,闪客专门做了一个鸿蒙应用开发入门到实战课程。热情的开发者们,是否已经准备好加入革命性的物联网和智能设备的行列,创造差异化的用户体验和未来派的智能解决方案?《探索HarmonyOS(鸿蒙应用开发)入门到实战》是专为您定制的技术探索指南,它将
- 聚焦工控物联网网关
明达技术
物联网
一、引言在工业物联网高速发展的当下,工控物联网网关作为连接工业现场设备与上层管理系统、云平台的关键组件,其兼容性与可扩展性至关重要。工业生产新技术、新设备不断涌现,企业数字化转型需求持续增长,网关的适配与扩展能力直接影响工业物联网系统的效能与发展前景。二、兼容性的关键体现(一)多协议支持工业现场通信协议多样,如Modbus、OPCUA、Profibus等。不同厂家设备协议各异,网关需支持多种协议,
- 青稞RISC-V通用系列
ws137517175
risc-v
青稞RISC-V通用系列的特点:高性能与低功耗:青稞系列处理器针对不同应用场景进行了优化,能够在提供高性能的同时保持低功耗,适合电池供电的设备和物联网终端。模块化设计:青稞系列采用模块化设计,用户可以根据需求选择不同的功能模块,如浮点运算单元(FPU)、数字信号处理(DSP)扩展、向量处理单元等。可扩展性:基于RISC-V的开放架构,青稞系列处理器支持用户自定义指令集扩展,能够满足特定应用场景的需
- 智慧园区安全调度的重要性
Guheyunyi
安全网络python大数据人工智能信息可视化数据分析
随着科技的飞速发展,智慧园区作为现代城市的重要组成部分,正逐渐成为企业、政府和居民生活的重要载体。智慧园区通过物联网、大数据、人工智能等先进技术,实现了资源的高效配置和管理的智能化。然而,随着园区规模的扩大和复杂性的增加,安全问题也日益凸显。因此,智慧园区的安全调度显得尤为重要。智慧园区安全调度的定义智慧园区安全调度是指通过先进的技术手段和管理方法,对园区内的各类安全风险进行实时监控、预警和应急处
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 生态碳汇涡度相关监测与通量数据分析
岁月如歌,青春不败
生态遥感数据分析碳汇生态科学涡度通量大涡模拟MATLAB
1、以涡度通量塔的高频观测数据,基于MATLAB:2、涡度通量观测基本概况:观测技术方法、数据获取与预处理等3、涡度通量数据质量控制:通量数据异常值识别与剔除等4、涡度通量数据缺失插补:结合气象数据进行通量数据缺失插补等5、涡度通量数据组分拆分:计算生态系统呼吸和总初级生产力等6、涡度通量数据可视化分析:绘制不同通量组分数据的时间变化等7、涡度通量与气象数据相关性:时间序列相关分析、回归分析等8、
- 最新技术趋势:2025年的无服务器架构发展方向
zxzy_org
serverless架构云原生算法
2025年,无服务器架构正迎来新的技术变革与应用浪潮。随着云计算和边缘计算的深入融合,无服务器架构的发展方向也更加明确。理解这些趋势可以帮助开发者和企业在技术演进中抢占先机。首先是边缘无服务器计算的兴起。传统的无服务器架构主要运行在集中化的云数据中心,而边缘无服务器计算将计算资源分布到用户附近的边缘节点。这种模式显著降低了延迟,特别适合实时应用场景,如物联网、增强现实(AR)和智能家居设备。AWS
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少