转载自:计算机学习绝对不能错过的10大网站(内附网站链接) | 机器之心
[ 导读 ]随着AI,大数据这些技术的快速发展,与此有关的知识也普及开来。如何在众多网站中寻找最有价值的信息,如何在最短的时间内获得最新的技术资讯?笔者在这里整理出大数据和人工智能领域最实用,质量最高的10大技术网站信息,既可以用于丰富技术知识,也可以用于学术研究,仅供参考。
1. Google AI Blog
名称:Google AI Blog
链接:research.googleblog.com
内容:AI
例文:SLING: A Natural Language Frame Semantic Parser
更新速度:未知
科学上网(此处是指需要连接VPN,下同):Yes
竞争强度:高
笔者有话说:该网站发布的文章为谷歌的最新研究成果,极具权威性和学术性。根据笔者经验,该网站的文章一出,就会受到各大微信公众号的疯抢,不到24个小时便能搜索到译文,由此可以看出该网站的水准的确很高。
2. Towards Data Science
名称:Towards Data Science
链接:towardsdatascience.com/
内容:Data Science
例文:Building an Altcoin Market Sentiment Monitor
更新速度:平均每日三至四篇
科学上网:Yes
竞争强度:中等
笔者有话说:这是一个内容非常丰富的数据科学学习网站。大多数的文章都是以案例展开,并附有代码和配图,文字严谨且具有良好的逻辑性,手把手教读者如何去操作,对于数据科学的初学者非常友好。就选文渠道而言,它的更新速度很快,因此关注该渠道可以获得源源不断的优质文章,可选择的余地非常大,但是要注意去甄别文章的内容,并不是所有文章都那么出色。
3. Analytics Vidhya
名称:Analytics Vidhya
链接:www.analyticsvidhya.com/blog/
内容:AI & Data Science
例文:The Essential NLP Guide for data scientists (with codes for top 10 common NLP tasks)
更新速度:平均每周一篇
科学上网:No
竞争强度:低
笔者有话说:与Towards Data Science一样,这也是一个优秀的数据科学教育网站。在它的blog里面,大多数的文章以教程的方式展开,并附有代码。除此之外,还有一些纯干货型文章,例如:The Essential NLP Guide for data scientists (with codes for top 10 common NLP tasks)。
4. Kdnuggets
名称:Kdnuggets
链接:www.kdnuggets.com
内容:Computer Science
例文:PySpark SQL Cheat Sheet: Big Data in Python
更新速度:优质选文成批发放,两至三周一更新
科学上网:No
竞争强度:高
笔者有话说:这是一个内容覆盖非常广泛的网站,不论是就职干货还是技术难题,它总会有相关的文章。该网站的文章质量非常高,因此是各大公众号的“兵家必争之地”。建议多挂住网站左下角的“Most Popular”和“Most Shared”里的文章,快捷高效地获取优质文章。
5. Pete Warden’s Blog
名称:Pete Warden’s Blog
链接:https://petewarden.com/
内容:AI
例文:How do CNNs Deal with Position Differences?
更新速度:平均两月一篇
科学上网:No
竞争强度:高
笔者有话说:这是技术牛人Pete Warden的个人博客。他的文章更新较慢,但是内容严谨且具权威性。文章大都附有图片和代码进行解释。该网站是一个很好的研究性信息来源,和Google Research Group一样,文章一出,非常容易遭到疯抢。另外,文章的内容比较艰深,同时篇幅长,比较适合学术研究使用。
6. Revolution Analytics
名称:Revolution Analytics
链接:http://blog.revolutionanalytics.com/
内容:News & Learning Resource
例文:Compare outlier detection methods with the OutliersO3 package
更新速度:优质文章成批发放,平均每月一次
科学上网:No
竞争强度:低
笔者有话说:这是一个杂文网站,文章种类繁多。平时会发布一些结构较小的文章,而每个月都会出现一次Roundup。这个Roundup通常分两个部分: 新闻和学习资源。建议主要关注这个Roundup里的学习资源,有许多技术性的文章质量很高。
7. DZONE
名称:DZONE
链接:https://dzone.com/
内容:各种计算机相关信息
例文:NLP in Python
更新速度:平均每日每种类别都会更新一到两篇文章
科学上网:No
竞争强度:低
笔者有话说:笔者在“内容”一栏填写了“各种计算机相关信息”,是因为这个网站的内容对于计算机领域的知识覆盖简直让人惊讶。不论是AI、云计算、数据安全还是计算机性能、IoT和网站设计,这网站都有相关的文章,并且分好了类别。该网站的更新速度很快,而且每次都会对各个类别的文章进行大量更新。但是,对于文章质量来讲,还需要认真甄别。
8. Codementor
名称:Codementor
链接:
https://www.codementor.io/community/topic/data-science
内容:各种附代码技术类干货
例文:Introducing pydbgen: A random dataframe/database table generator
更新速度:每月一篇
科学上网:No
竞争强度:低
笔者有话说:这是一个对于文章管理不是特别好的网站,它的文章没有分类,因此很难摸清楚它发文章的具体套路。根据笔者经验,这个网站所发的文章基本都是技术性文章,帮助解决各种技术性问题的。文章大都附有代码,因此比较干货。
9. Data+Science
名称:Data+Science
链接:
https://www.dataplusscience.com/insights.html
内容:数据可视化
例文:Finding the Nearest Ocean Coast or any Nearest Point on a Map in Tableau
更新速度:每月两篇
科学上网:No
竞争强度:低
笔者有话说:这个网站的主题是数据可视化。因此,它的所有文章都是数据可视化案例,其中比较多见的就是Tableau的case。这个网站文章的最大特点就是其运用到极致的版面设计美学(笔者有点夸张(#^.^#))。文章的排版、配图还有操作解说都安排得整洁美观,对于读者来说也格外赏心悦目,文章的内容也是干货满满。
10. Edwin Chen’s Blog
名称:Edwin Chen’s Blog
链接:http://blog.echen.me/
内容:AI
例文:Exploring LSTMs
更新速度:未知
科学上网:No
竞争强度:高
笔者有话说:关注这个Blog,很大程度上是因为一篇爆热文:Exploring LSTMs。这篇文章在刚刚发出来以后,被各大公众号争相翻译和转发。笔者个人对于这个技术大牛的网站就八个字的评价:“不鸣则已,一鸣惊人”。它的文章质量非常高,同时讨论的也是非常前沿的话题,因此称之为“篇篇热门”并不为过。但是它的缺点也非常明显,大牛更文更得非常慢,文章之间隔了几个月是常有的事。另外该网站发布的文章篇幅较长,内容艰深,对于读者的英文水平和AI专业知识要求非常高。