深度卷积网络--特征融合

文章目录

  • 一、特征融合介绍
    • (1)早融合:
    • (2)晚融合:

一、特征融合介绍

特征融合的目的是把从图像中提取到的特征,合并成一个比输入图片特征更具有判别能力的特征。

在很多工作中,融合不同尺度的特征是提高分割性能的一个重要手段。低层特征分辨率更高,包含更多位置、细节信息,但是由于经过的卷积更少,其语义性更低,噪声更多。高层特征具有更强的语义信息,但是分辨率很低,对细节的感知能力较差。如何将两者高效融合,取其长处,弃之糟泊,是改善分割模型的关键。
很多工作通过融合多层来提升检测和分割的性能,按照融合与预测的先后顺序,分类为早融合(Early fusion)和晚融合(Late fusion)。

关于深度特征融合—高低层特征融合,归纳起来共讨论了4类方法:

(1)早融合:

用经典的特征融合方法:在现有的网络(如VGG19)中,用concat或add融合 其中的某几层;
FCN、Hypercolumns—>add
Inside-Outside Net(ION)、 ParseNet 、HyperNet—>concat
变种:用DCA特征融合方法代替concat和add操作;

(2)晚融合:

(2.1)采用类似特征金字塔网络(FPN)的思想,对特征融合后进行预测。 (FPN一般用于目标检测,提高小目标检测能力) 三个变种:
1.YOLO2的方法,只在金字塔的top-down路径的最后一层进行预测,此外还有 U-Net [31] and SharpMask for segmentation, Recombinator networks for face detection, and Stacked Hourglass networks for keypoint estimation.
2.YOLO3的方法,在金字塔的每一层都进行预测
3.FSSD的方法,对 FPN进行细微改造

(2.2)feature不融合,多尺度的feture分别进行预测,然后对预测结果进行综合,如Single Shot MultiBox Detector (SSD) , Multi-scale CNN(MS-CNN)

(3)用一个具有高低特征融合能力的网络替代普通的网络,如Densenet;

(4)不进行高低层特征融合,而是在高层特征预测的基础上,再用底层特征进行预测结果的调整

两个经典的特征融合方法:

(1)concat:系列特征融合,直接将两个特征进行连接。两个输入特征x和y的维数若为p和q,输出特征z的维数为p+q;
(2)add:并行策略,将这两个特征向量组合成复向量,对于输入特征x和y,z = x + iy,其中i是虚数单位。

你可能感兴趣的:(深度学习,网络,目标检测,计算机视觉)