matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂

原标题:这么讲解高斯白噪声,还有色噪声,谁都会懂

百度百科上解释为 “高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布”,听起来有些晦涩难懂,下面结合例子通俗而详细地介绍一下。

白噪声,如同白光一样,是所有颜色的光叠加而成,不同颜色的光本质区别是的它们的频率各不相同(如红色光波长长而频率低,相应的,紫色光波长短而频率高)。白噪声在功率谱上(若以频率为横轴,信号幅度的平方为功率)趋近为常值,即噪声频率丰富,在整个频谱上都有成分,即从低频到高频,低频指的是信号不变或缓慢变化,高频指的是信号突变。

由傅里叶变换性质可知, 时域有限,频域无限;频域有限,时域无限。那么频域无限的信号变换到时域上,对应于冲击函数的整数倍(由公式也可推得:)。即说明在时间轴的某点上,噪声孤立,与其它点的噪声无关,也就是说,该点噪声幅值可以任意,不受前后点噪声幅值影响。简而言之, 任意时刻出现的噪声幅值都是随机的(这句话实际上说的就是 功率谱密度服从均与分布的意思,不同的是,前者从时域角度描述,而后者是从频域角度描述)。这里要指出 功率谱密度(Power Spectral Density,PSD)的概念,它从频域角度出发,定义了信号的功率是如何随频率分布的, 即以频率为横轴,功率为纵轴。

既然白噪声信号是“随机”的,那么反过来,什么叫做 “相关”呢?顾名思义,相关就是某一时刻的噪声点不孤立,和其它时刻的噪声幅值有关。其实相关的情况有很多种,比如此时刻的噪声幅值比上一时刻的大,而下一时刻的噪声幅值比此时刻的还大,即信号的幅值在时间轴上按从小到大的顺序排列。除此之外,幅值从大到小,或幅值一大一小等都叫做“相关”,而非“随机”的。

解释完了“白噪声”,再来谈谈 “高斯分布”。高斯分布,又名正态分布( normal distribution)。 概率密度函数曲线的形状又两个参数决定:平均值和方差。简单来说,平均值决定曲线对称中线,方差决定曲线的胖瘦,即贴近中线的程度。概率密度定义了信号出现的频率是如何随着其幅值变化的, 即以信号幅值为横轴,以出现的频率为纵轴。因此,从概率密度角度来说,高斯白噪声的幅度分布服从高斯分布

描述了“白噪声”和“高斯噪声”两个含义,那么,回到文章开头的解释: 高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布。它的意义就很明确了,上半句是从空域(幅值)角度描述“高斯噪声”,而下半句是从频域角度描述“白噪声”。

下面以matlab程序演示,感性认识一下高斯白噪声。

程序1(高斯白噪声)

matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂_第1张图片

matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂_第2张图片

由上图可以看出,高斯白噪声的功率谱密度服从均匀分布。

若对噪声进行由小到大排序,则使其从随机噪声变为相关噪声,则功率谱密度就不再是均匀分布了。

程序2(非高斯白噪声)

matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂_第3张图片

matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂_第4张图片

下面让我们从高斯白噪声的统计信息和幅值分布看一下它的特点。

程序3(高斯白噪声)

matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂_第5张图片

matlab加有色噪声,这么讲解高斯白噪声,还有色噪声,谁都会懂_第6张图片

直方图的纵轴为频次,而概率密度的纵轴为频率,但是两者大致的分布曲线确是一样的,因此,这幅图解释了高斯白噪声的幅度分布服从高斯分布。

白噪声在整个频谱内每个频点的能量为常数,且基本恒定,不管对信号进行低通还是高通处理,均不能有效地滤除白噪声,因为它存在于整个频带范围内。有趣的是人类对白噪声的了解已经非常充分,并能熟练地从中提取很多有用的信息。白噪声甚至具有医疗功能,有些医学专家(主要是内科医生和牙医)还成功地在试验中将白噪声应用于轻度麻醉。准确地讲,白噪声是随机的,它不具有相关性,故也没有偏差,因此,白噪声可以叠加到信号和算法中,或始终存在于模/数转换器中,而不会造成长期误码。通过恰当的处理, 白噪声还可以用来创造声音,包括人的声音和自然界的声音,甚至还能合成其它噪声。在采用逆变换方法消除白噪声之前,可用FFT或小波滤波系统有效地提取白噪声并对结果设置门限值。一般来说,通过随机数字发生器可以生成白噪声,但实验表明要生成理想的白噪声很难,其它噪声的合成也与此类似。

色噪声

又是神马

白色包含了所有的颜色,因此白噪声的特点就是包含各种噪声。白噪声定义为在无限频率范围内功率密度为常数的信号,这就意味着还存在其它“颜色”的噪声,下面是常见的色噪声及其定义:

1.粉红噪声。在给定频率范围内(不包含直流成分),随着频率的增加,其功率密度每倍频程下降3dB(密度与频率成反比)。每倍频的功率相同,但要产生每倍频程3dB的衰减非常困难,因此,没有纹波的粉红噪声在现实中很难找到。

2.红噪声(海洋学概念)。这是有关海洋环境的一种噪声,由于它是有选择地吸收较高的频率,因此称之为红噪声。

3.橙色噪声。该类噪声是准静态噪声,在整个连续频谱范围内,功率谱有限且零功率窄带信号数量也有限。这些零功率的窄带信号集中于任意相关音符系统的音符频率中心上。由于消除了所有的合音,这些剩余频谱就称为“橙色”音符。

4.蓝噪声。在有限频率范围内,功率密度随频率的增加每倍频增长3dB(密度正比于频率)。对于高频信号来说,它属于良性噪声。

5.紫噪声。在有限频率范围内,功率密度随频率的增加每倍频增长6dB(密度正比于频率的平方值)。

6.灰色噪声。该噪声在给定频率范围内,类似于心理声学上的等响度曲线(如反向的A-加权曲线),因此在所有频率点的噪声电平相同。

7.棕色噪声。在不包含直流成分的有限频率范围内,功率密度随频率的增加每倍频下降6dB(密度与频率的平方成反比)。该噪声实际上是布朗运动产生的噪声,它也称为随机飘移噪声或醉鬼噪声。

8.黑噪声(静止噪声)包括:

(1) 有源噪声控制系统在消除了一个现有噪声后的输出信号。

(2) 在20kHz以上的有限频率范围内,功率密度为常数的噪声,一定程度上它类似于超声波白噪声。这种黑噪声就象“黑光”一样,由于频率太高而使人们无法感知,但它对你和你周围的环境仍然有影响。

(3) 具有fβ谱,其中β>2。根据经验可知,该噪声的危害性很大。

在信号处理中,我们经常会提及狄拉克(Dirac)函数或单位脉冲,这种脉冲是指具有零宽度和无限高电平的信号。然而,具有无穷低电平和无穷高电平的脉冲是无法找到的,但可根据不同要求,产生带宽可选和功率密度可选的信号,然后将这些信号叠加到试验对象上,这样我们就可以观察到哪部分信号被吸收,或者哪部分信号会产生谐振。

噪声无处不在,世界有它更精彩。返回搜狐,查看更多

责任编辑:

你可能感兴趣的:(matlab加有色噪声)