【雷达与对抗】【2018.05】用于调制信号分类的深度神经网络结构

【雷达与对抗】【2018.05】用于调制信号分类的深度神经网络结构_第1张图片


本文为美国普渡大学作者:Xiaoyu Liu)的硕士论文62

 

本文研究了深度学习在无线信号调制识别中的应用价值最近AMC的深度学习研究中引入了一种框架通过使用GNU无线电产生一个数据集来模拟真实无线信道中的缺陷其中采用10种不同的调制类型此外,CNN的体系结构已经被开发出来展示出超越基于专家的方法的性能在这里我们遵循O'shea的框架并发现深度神经网络架构能够提供比最新技术更高的准确性我们测试了O'shea架构发现它能够准确识别不同的调制类型准确率约为75%。我们首先调整CNN架构找到一种具有四个卷积层和两个密集层的设计在高信噪比下分类精度约为83.8%。然后我们基于最近引入的剩余网络(ResNet)密集连接网络(DenseNet)的思想开发架构以分别达到高信噪比下大约83%86.6%的精度我们还引入了CLDNN,在高信噪比下达到约88.5%的精度为了提高QAM的分类精度我们将QAM16QAM64的高阶累积量作为专家特征进行了计算总精度提高到90%左右最后通过对输入进行预处理并将其输入到LSTM模型中我们将分类成功率提高到100%,WBFM(46%)除外本论文的平均调制分类精度提高了约22%。

 

This thesis investigates the value of employing deep learning for the task of wireless signal modulation recognition. Recently in deep learning research on AMC, a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 10 different modulation types. Further, a CNN architecture was developed and shown to deliver performance that exceeds that of expert-based approaches. Here, we follow the framework of O'shea [1] and find deep neural network architectures that deliver higher accuracy than the state of the art. We tested the architecture of O'shea [1] and found it to achieve an accuracy of approximately 75% of correctly recognizing the modulation type. We first tune the CNN architecture and find a design with four convolutional layers and two dense layers that gives an accuracy of approximately 83.8% at high SNR. We then develop architectures based on the recently introduced ideas of Residual Networks (ResNet) and Densely Connected Network (DenseNet) to achieve high SNR accuracies of approximately 83% and 86.6%, respectively. We also introduce a CLDNN to achieve an accuracy of approximately 88.5% at high SNR. To improve the classification accuracy of QAM, we calculate the high order cumulants of QAM16 and QAM64 as the expert feature and improve the total accuracy to approximately 90%. Finally, by preprocessing the input and send them into a LSTM model, we improve all classification success rates to 100% except the WBFM which is 46%. The average modulation classification accuracy got a improvement of roughly 22% in this thesis.

 

1 引言

1.1 研究动机

1.2 项目背景

2 实验设置

2.1 产生数据集

2.2 硬件

3 神经网络架构

3.1 CNN

3.2 ResNet

3.3 DenseNet

3.4 CLDNN

3.5 基于累积量的特征

3.6 LSTM

4 结论与未来研究展望 


推荐公众号:电力电子技术与新能源

640?wx_fmt=jpeg


推荐公众号:MATLAB基于模型的设计

640?wx_fmt=jpeg


下载英文原文请点击“阅读原文”

你可能感兴趣的:(【雷达与对抗】【2018.05】用于调制信号分类的深度神经网络结构)