1.准备环境
https://github.com/marsbroshok/VAD-python
里面的vad.py文件
2.具体代码
from vad import VoiceActivityDetector
import wave
if __name__ == "__main__":
load_file = "test.wav"
save_file = "process.wav"
# 获取vad分割节点
v = VoiceActivityDetector(load_file)
raw_detection = v.detect_speech()
speech_labels, point_labels = v.convert_windows_to_readible_labels(raw_detection)
if len(point_labels) != 0:
# 根据节点音频分割并连接
data = v.data
cut_data = []
Fs = v.rate
for start, end in point_labels:
cut_data.extend(data[int(start):int(end)])
# 保存音频
f = wave.open(save_file, 'w')
nframes = len(cut_data)
f.setparams((1, 2, Fs, nframes, 'NONE', 'NONE')) # 声道,字节数,采样频率,*,*
wavdata = np.array(cut_data)
wavdata = wavdata.astype(np.int16)
f.writeframes(wavdata) # outData
f.close()
3.部分参数
vad.py文件
class VoiceActivityDetector():
""" Use signal energy to detect voice activity in wav file """
def __init__(self, wave_input_filename):
self._read_wav(wave_input_filename)._convert_to_mono()
#沿音频数据移动 20 毫秒的窗口。
self.sample_window = 0.02 # 20 ms
self.sample_overlap = 0.01 # 10ms
#应用长度为 0.5s 的中值滤波器来平滑检测到的语音区域。
self.speech_window = 0.5 # half a second
#计算语带能量与窗口总能量的比值。如果比率大于阈值(默认为 0.6),则将窗口标记为语音
self.speech_energy_threshold = 0.6 # 60% of energy in voice band
#中值滤波器(滤波保留2000-8000hz)
self.speech_start_band = 2000
self.speech_end_band = 8000
self.data_speech = []