对于颜色识别和imutils
包的用法请浏览我得另一篇博客:OpenCV学习笔记
个人博客原址:OpenCV颜色识别 物体追踪
这是个比较简单的代码。代码实现的就是简单的物体追踪,将物体用方框框出。
简单来讲就是先进行颜色识别,正确识别到物体后获取物体的外接矩形再画出外接矩形即可。
详细的解释可以看代码注释,应该是容易理解的。
import cv2
import numpy as np
import imutils
from imutils import contours
# 颜色阈值
lower = np.array([130, 62, 72])
upper = np.array([170, 255, 148])
# 内核
kernel = np.ones((5, 5), np.uint8)
# 打开摄像头
vc = cv2.VideoCapture(0)
if vc.isOpened():
flag, frame = vc.read()
# 翻转图像
# 这一步可以忽略,博主的摄像头是反着的
# 所以加上这句话可以让摄像头的图像正过来
frame = imutils.rotate(frame, 180)
cv2.imshow("frame", frame)
else:
flag = False
while flag:
flag, frame = vc.read()
# 翻转图像
frame = imutils.rotate(frame, 180)
draw_frame = frame.copy()
if frame is None:
break
if flag is True:
'''下面对摄像头读取到的图像进行处理,这个步骤是比较重要的'''
# 转换颜色空间HSV
frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 颜色识别
img = cv2.inRange(frame_hsv, lower, upper)
# 膨胀操作
dilation = cv2.dilate(img, kernel, iterations=1)
# 闭操作
closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel)
# 高斯滤波
closing = cv2.GaussianBlur(closing, (5, 5), 0)
# 边缘检测
edges = cv2.Canny(closing, 10, 20)
'''上面进行那么多操作就是为了得到更好的目标图形,具体效果因环境而异'''
# 寻找轮廓
cnts, _ = cv2.findContours(
edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# 判断轮廓数量也就是判断是否寻找到轮廓,如果没有找到轮廓就不继续进行操作
if len(cnts) > 0:
# 存放轮廓面积的列表
s = []
# 存放最大轮廓的索引
max_index = 0
# 获得排序后的轮廓列表以及每个轮廓对应的外接矩形
(cnts, boundingRects) = contours.sort_contours(cnts)
# 寻找面积最大的轮廓的索引
for cnt in cnts:
s.append(cv2.contourArea(cnt))
max_index = s.index(max(s))
# 根据面积最大轮廓的索引找到它的外接矩形的信息
(x, y, w, h) = boundingRects[max_index]
# 画矩形
frame_out = cv2.rectangle(
draw_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow("frame", draw_frame)
if cv2.waitKey(10) == 27:
break
vc.release()
cv2.destroyAllWindows()
具体解释都在代码注释里面了,下面我要提一些注意的地方。
contours.sort_contours
和 imutils.rotate
是imutils
包里面的,使用起来比较方便,具体用法可以看博主的另一篇博客:OpenCV学习笔记。外接矩形也可以通过cv2.boundingRect
函数获得。