python实现高斯滤波器_均值滤波、高斯滤波python实现

首先编写卷积代码

保证可以实现各种size滤波

def image_convolution(image,kernel):

[img_height,img_width] = image.shape

[kernel_height,kernel_width] = kernel.shape

expand_width = int((kernel_width - 1)/2)

expand_height = int((kernel_height - 1)/2)

con_height = int(img_height + expand_height*2)

con_width = int(img_width + expand_width*2)

#给结果图像、用于卷积处理的矩阵创建空间

result_image = np.zeros(image.shape)

con_image = np.zeros((con_height, con_width))

#填入图片

con_image[expand_height:expand_height+img_height, expand_width:expand_width+img_width]=image[ : , :]

#对每个像素点进行处理

for i in range(expand_height,expand_height+img_height):

for j in range(expand_width,expand_width+img_width):

result_image[i-expand_height][j-expand_width] = int(np.sum(con_image[i-expand_height:i+expand_height+1, j-expand_width:j+expand_width+1]*kernel))

print(result_image)

return result_image

均值滤波

设计kernel很简单,初始化为1后遍历除以size平方即可

def mean_mask(size):

mask=np.ones((size, size))

return mask/size/size

高斯滤波

def gauss_mask(sigma):

mask_height = mask_width = sigma*2+1

mask = np.zeros((mask_height, mask_width))

sum = 0

for i in range(-sigma,sigma+1):

for j in range(-sigma,sigma+1):

mask[i+sigma][j+sigma] = np.exp(-0.5 * (i ** 2 + j ** 2) / sigma ** 2)

sum += mask[i+sigma][j+sigma]

return mask/sum

代码总和

import cv2 as cv2

import matplotlib.pyplot as plt

import numpy as np

def image_convolution(image,kernel):

[img_height,img_width] = image.shape

[kernel_height,kernel_width] = kernel.shape

expand_width = int((kernel_width - 1)/2)

expand_height = int((kernel_height - 1)/2)

con_height = int(img_height + expand_height*2)

con_width = int(img_width + expand_width*2)

#给结果图像、用于卷积处理的矩阵创建空间

result_image = np.zeros(image.shape)

con_image = np.zeros((con_height, con_width))

#填入图片

con_image[expand_height:expand_height+img_height, expand_width:expand_width+img_width]=image[ : , :]

#对每个像素点进行处理

for i in range(expand_height,expand_height+img_height):

for j in range(expand_width,expand_width+img_width):

result_image[i-expand_height][j-expand_width] = int(np.sum(con_image[i-expand_height:i+expand_height+1, j-expand_width:j+expand_width+1]*kernel))

print(result_image)

return result_image

def gauss_mask(sigma):

mask_height = mask_width = sigma*2+1

mask = np.zeros((mask_height, mask_width))

sum = 0

for i in range(-sigma,sigma+1):

for j in range(-sigma,sigma+1):

mask[i+sigma][j+sigma] = np.exp(-0.5 * (i ** 2 + j ** 2) / sigma ** 2)

sum += mask[i+sigma][j+sigma]

return mask/sum

def mean_mask(size):

mask=np.ones((size, size))

return mask/size/size

if __name__ == "__main__":

image = cv2.imread("dongcha.jpg", 0)

image = cv2.resize(image,(512,512))

kernel = mean_mask(5)

result = np.zeros(image.shape)

result = image_convolution(image = image,kernel = kernel)

print(result)

result=result.astype(np.uint8)

cv2.imshow("result", result)

cv2.imshow("orignal", image)

# mask =gauss_mask(1)

print(kernel)

# print(mask/sum(mask))

cv2.waitKey(0)

效果如下

原文:https://www.cnblogs.com/xinyuLee404/p/12719112.html

你可能感兴趣的:(python实现高斯滤波器)