把yoloV5识别出的结果文本转换至voc格式数据集
import os
import os.path
from PIL import Image
from xml.dom.minidom import Document
def write_xml(tmp, image, w, h, obj_bud, wx_ml, classes):
doc = Document()
# owner
annotation = doc.createElement('annotation')
doc.appendChild(annotation)
# owner
folder = doc.createElement('folder')
annotation.appendChild(folder)
folder_txt = doc.createTextNode("VOC2005")
folder.appendChild(folder_txt)
filename = doc.createElement('filename')
annotation.appendChild(filename)
filename_txt = doc.createTextNode(image)
filename.appendChild(filename_txt)
# ones#
source = doc.createElement('source')
annotation.appendChild(source)
database = doc.createElement('database')
source.appendChild(database)
database_txt = doc.createTextNode("The VOC2005 Database")
database.appendChild(database_txt)
annotation_new = doc.createElement('annotation')
source.appendChild(annotation_new)
annotation_new_txt = doc.createTextNode("PASCAL VOC2005")
annotation_new.appendChild(annotation_new_txt)
image = doc.createElement('image')
source.appendChild(image)
image_txt = doc.createTextNode("flickr")
image.appendChild(image_txt)
size = doc.createElement('size')
annotation.appendChild(size)
width = doc.createElement('width')
size.appendChild(width)
width_txt = doc.createTextNode(str(w))
width.appendChild(width_txt)
height = doc.createElement('height')
size.appendChild(height)
height_txt = doc.createTextNode(str(h))
height.appendChild(height_txt)
depth = doc.createElement('depth')
size.appendChild(depth)
depth_txt = doc.createTextNode("3")
depth.appendChild(depth_txt)
segmented = doc.createElement('segmented')
annotation.appendChild(segmented)
segmented_txt = doc.createTextNode("0")
segmented.appendChild(segmented_txt)
for i in range(0, int(len(obj_bud))):
obj_buds = obj_bud[i].split(' ')
# threes#
object_new = doc.createElement("object")
annotation.appendChild(object_new)
name = doc.createElement('name')
object_new.appendChild(name)
name_txt = doc.createTextNode(classes[int(float(obj_buds[0]))])
name.appendChild(name_txt)
pose = doc.createElement('pose')
object_new.appendChild(pose)
pose_txt = doc.createTextNode("Unspecified")
pose.appendChild(pose_txt)
truncated = doc.createElement('truncated')
object_new.appendChild(truncated)
truncated_txt = doc.createTextNode("0")
truncated.appendChild(truncated_txt)
difficult = doc.createElement('difficult')
object_new.appendChild(difficult)
difficult_txt = doc.createTextNode("0")
difficult.appendChild(difficult_txt)
# threes-1#
bnd_box = doc.createElement('bndbox')
object_new.appendChild(bnd_box)
x_min = doc.createElement('xmin')
bnd_box.appendChild(x_min)
x_min_txt = doc.createTextNode(str(int((float(obj_buds[1]) * w - float(obj_buds[3]) * w / 2.0))))
x_min.appendChild(x_min_txt)
y_min = doc.createElement('ymin')
bnd_box.appendChild(y_min)
y_min_txt = doc.createTextNode(str(int(float(obj_buds[2]) * h - float(obj_buds[4]) * h / 2.0)))
y_min.appendChild(y_min_txt)
x_max = doc.createElement('xmax')
bnd_box.appendChild(x_max)
x_max_txt = doc.createTextNode(str(int(float(obj_buds[1]) * w + float(obj_buds[3]) * w / 2.0)))
x_max.appendChild(x_max_txt)
y_max = doc.createElement('ymax')
bnd_box.appendChild(y_max)
y_max_txt = doc.createTextNode(str(int(float(obj_buds[2]) * h + float(obj_buds[4]) * h / 2)))
y_max.appendChild(y_max_txt)
temple = tmp + "test.xml"
with open(temple, "w") as f:
f.write(doc.toprettyxml(indent='\t'))
rewrite = open(temple, "r")
lines = rewrite.read().split('\n')
newlines = lines[1:len(lines) - 1]
fw = open(wx_ml, "w")
for i in range(0, len(newlines)):
fw.write(newlines[i] + '\n')
fw.close()
rewrite.close()
os.remove(temple)
return
def yolo_to_voc(labels_path, xml_path, img_path, classes):
if not os.path.exists(xml_path):
os.mkdir(xml_path)
temp = "temp/"
if not os.path.exists(temp):
os.mkdir(temp)
for files in os.walk(labels_path):
for file in files[2]:
print(file + "-->start!")
img_name = os.path.splitext(file)[0] + '.jpg'
file_img_path = img_path + img_name
im = Image.open(file_img_path)
width = int(im.size[0])
height = int(im.size[1])
file_label = open(labels_path + file, "r")
lines = file_label.read().split('\n')
obj = lines[:len(lines) - 1]
# print(obj)
filename = xml_path + os.path.splitext(file)[0] + '.xml'
write_xml(temp, img_name, width, height, obj, filename, classes)
os.rmdir(temp)
if __name__ == '__main__':
# yolo标注.txt文件夹
labels_path_ = "Annotations/labels/"
# 对应的图片文件夹
img_path_ = 'Annotations/images/'
# 这里要改成转换后保存的数据集路径
xml_path_ = 'Annotations/xml/'
# 标签
Class_Name = ['M', 'L', 't']
yolo_to_voc(labels_path_, xml_path_, img_path_, Class_Name)