1.直接输入参数
np.repeat()用于将numpy数组重复。
numpy.repeat(a, repeats, axis=None);
参数:
axis=0,沿着y轴复制,实际上增加了行数
axis=1,沿着x轴复制,实际上增加了列数
在一次卷积计算中,filter可以在input的两个维度上扫描,即参数stride
的取值为一个元组,例如stride=(2, 3)
,即在hieght
维度上的步长为2,在width
上的步长为3。
2.cv2自带
3.公式(可以改变半径r和方差)
import torch
import numpy as np
import math
import matplotlib.pyplot as plt
class MyGaussianBlur():
#初始化
def __init__(self, radius=1, sigema=1.5):
self.radius=radius
self.sigema=sigema
#高斯的计算公式
def calc(self,x,y):
res1=1/(2*math.pi*self.sigema*self.sigema)
res2=math.exp(-(x*x+y*y)/(2*self.sigema*self.sigema))
return res1*res2
#滤波模板
def template(self):
sideLength=self.radius*2+1
result=np.zeros((sideLength, sideLength))
for i in range(0, sideLength):
for j in range(0,sideLength):
result[i, j] = self.calc(i - self.radius, j - self.radius)
all= result.sum()
return result/all
#滤波函数
def filter(self, image, template):
kernel = np.array(template)
kernel2 = torch.FloatTensor(kernel).expand(3, 1, 2*r+1, 2*r+1)
weight = torch.nn.Parameter(data=kernel2, requires_grad=False)
new_pic2 = torch.nn.functional.conv2d(image, weight, padding=1, groups=3)
return new_pic2
r=4 #模版半径,自己自由调整
s=5 #sigema数值,自己自由调整
GBlur=MyGaussianBlur(radius=r, sigema=s)#声明高斯模糊类
temp=GBlur.template()#得到滤波模版
pic = plt.imread("1.jpg")
tensor_pic=torch.tensor(pic,dtype=torch.float32)/255
im=tensor_pic.permute(2,0,1).unsqueeze(0)
image=GBlur.filter(im, temp)#高斯模糊滤波,得到新的图片
print(image.shape)
plt.imshow(image.squeeze(0).permute(1,2,0))
plt.show()
MNIST数据集的高斯模糊
import numpy as np
import torch
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torch.nn.functional as F
import math
transform = transforms.ToTensor()
train_data = datasets.MNIST(root='mnist', train=True, transform=transform, download=True)
test_data = datasets.MNIST(root='mnist', train=False, transform=transform, download=True)
batch_size = 64
num_worker = 0
train_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=True, num_workers=num_worker)
test_loder = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False, num_workers=num_worker)
dataiters = iter(test_loder)
images, labels = dataiters.next()
class MyGaussianBlur():
# 初始化
def __init__(self, radius=1, sigema=1.5):
self.radius = radius
self.sigema = sigema
# 高斯的计算公式
def calc(self, x, y):
res1 = 1 / (2 * math.pi * self.sigema * self.sigema)
res2 = math.exp(-(x * x + y * y) / (2 * self.sigema * self.sigema))
return res1 * res2
# 滤波模板
def template(self):
sideLength = self.radius * 2 + 1
result = np.zeros((sideLength, sideLength))
for i in range(0, sideLength):
for j in range(0, sideLength):
result[i, j] = self.calc(i - self.radius, j - self.radius)
all = result.sum()
return result / all
# 滤波函数
def filter(self, image, template):
kernel = np.array(template)
kernel2 = torch.FloatTensor(kernel).expand(channel, 1, 2 * r + 1, 2 * r + 1)
weight = torch.nn.Parameter(data=kernel2, requires_grad=False)
new_pic2 = torch.nn.functional.conv2d(image, weight, padding=(2 * r + 1) // 2, groups=channel)
return new_pic2
channel = 1 # 单通道为1, 三通道为3
r = 2 # 模版半径,自己自由调整
s = 5 # sigema数值,自己自由调整
GBlur = MyGaussianBlur(radius=r, sigema=s) # 声明高斯模糊类
temp = GBlur.template() # 得到滤波模版
image = GBlur.filter(images, temp) # 高斯模糊滤波,得到新的图片
new_image = image.numpy()
times = 0
for i in range(4):
times += 1
print('count:', times)
img = np.squeeze(new_image[i]) # 获得第一个图片的数
# print('img:', img)
print(new_image.shape)
print(new_image[i].shape)
print('shape', img.shape)
plt.imshow(img, cmap='gray')
plt.show()