机器学习入门?十大机器学习算法,学习复盘:七月在线机器学习集训营

学习路径

之前报名学习了七月在线的机器学习集训营,掌握了机器学习算法全面性以及细节,总结了一些经验

感兴趣的可以自取哈
链接:https://pan.baidu.com/s/1WpbUh_2K_daIiHHdoWXCXQ
提取码:j4vg 

算法

机器学习算法分类:监督学习、无监督学习、强化学习
基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(KNN)、逻辑回归、决策树、k平均、随机森林、朴素贝叶斯、降维、梯度增强

算法分类

机器学习算法大致可以分为三类:

监督学习算法 (Supervised Algorithms):在监督学习训练过程中,可以由训练数据集学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。该算法要求特定的输入/输出,首先需要决定使用哪种数据作为范例。例如,文字识别应用中一个手写的字符,或一行手写文字。主要算法包括神经网络、支持向量机、最近邻居法、朴素贝叶斯法、决策树等。
无监督学习算法 (Unsupervised Algorithms):这类算法没有特定的目标输出,算法将数据集分为不同的组。
强化学习算法 (Reinforcement Algorithms):强化学习普适性强,主要基于决策进行训练,算法根据输出结果(决策)的成功或错误来训练自己,通过大量经验训练优化后的算法将能够给出较好的预测。类似有机体在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。在运筹学和控制论的语境下,强化学习被称作“近似动态规划”(approximate dynamic programming,ADP)。

 

基本的机器学习算法:

线性回归算法 Linear Regression
支持向量机算法 (Support Vector Machine,SVM)
最近邻居/k-近邻算法 (K-Nearest Neighbors,KNN)
逻辑回归算法 Logistic Regression
决策树算法 Decision Tree
k-平均算法 K-Means
随机森林算法 Random Forest
朴素贝叶斯算法 Naive Bayes
降维算法 Dimensional Reduction
梯度增强算法 Gradient Boosting

 

机器学习入门?十大机器学习算法,学习复盘:七月在线机器学习集训营_第1张图片

 

你可能感兴趣的:(python,深度学习)