Python--Numpy简单了解

文章目录

  • Python--Numpy简单了解
    • 1. Numpy优势
      • 1.1 Numpy介绍 - 数值计算库
      • 1.2 ndarray介绍
      • 1.3 ndarray与Python原生list运算效率对比
      • 1.4 ndarray的优势
    • 2. 认识N维数组-ndarray属性
      • 2.1 ndarray的属性
      • 2.2 ndarray的形状
      • 2.3 ndarray的类型
    • 3. 基本操作
      • 3.1 生成数组的方法
        • 3.1.1 生成0和1
        • 3.1.2 从现有数组中生成
        • 3.1.3 生成固定范围的数组
        • 3.1.4 生成随机数组
      • 3.2 数组的索引、切片
      • 3.3 形状修改
      • 3.4 类型修改
      • 3.5 数组的去重
    • 4. ndarray运算
      • 4.1 逻辑运算
      • 4.2 统计运算
    • 5. 数组间运算
      • 5.1 场景
      • 5.2 数组与数的运算
      • 5.3 数组与数组的运算
      • 5.4 广播机制
      • 5.5 矩阵运算
    • 6. 合并、分割
      • 6.1 合并
      • 6.2 分割
    • 7. IO操作与数据处理
      • 7.1 Numpy读取
      • 7.2 如何处理缺失值

Python–Numpy简单了解

  • Numpy 高效的运算工具
  • Numpy的优势
  • ndarray属性
  • 基本操作
    • ndarray.方法()
    • numpy.函数名()
  • ndarray运算
    • 逻辑运算
    • 统计运算
    • 数组间运算
  • 合并、分割、IO操作、数据处理

1. Numpy优势

1.1 Numpy介绍 - 数值计算库

  • num - numerical 数值化的
  • py - python
  • ndarray
    • n - 任意个
    • d - dimension 维度
    • array - 数组

1.2 ndarray介绍

import numpy as np
score = np.array([[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])

Python--Numpy简单了解_第1张图片

1.3 ndarray与Python原生list运算效率对比

import random
import time
# 生成一个大数组
python_list = []

for i in range(100000000):
    python_list.append(random.random())
ndarray_list = np.array(python_list)

# 原生pythonlist求和
t1 = time.time()
a = sum(python_list)
t2 = time.time()
d1 = t2 - t1

# ndarray求和
t3 = time.time()
b = np.sum(ndarray_list)
t4 = time.time()
d2 = t4 - t3

d1= 0.7309620380401611
d2= 0.12980318069458008

1.4 ndarray的优势

  1. 存储风格
    ndarray - 相同类型 - 通用性不强
    list - 不同类型 - 通用性很强
  2. 并行化运算
    ndarray支持向量化运算
  3. 底层语言
    C语言,解除了GIL
    Python--Numpy简单了解_第2张图片

2. 认识N维数组-ndarray属性

2.1 ndarray的属性

  • shape
    • ndim :看看维度
    • size :看看大小
  • dtype
    • itemsize :一个元素所占大小
  • 在创建ndarray的时候,如果没有指定类型
  • 默认
    • 整数 int64
    • 浮点数 float64
array([[80, 89, 86, 67, 79],
       [78, 97, 89, 67, 81],
       [90, 94, 78, 67, 74],
       [91, 91, 90, 67, 69],
       [76, 87, 75, 67, 86],
       [70, 79, 84, 67, 84],
       [94, 92, 93, 67, 64],
       [86, 85, 83, 67, 80]])

score.shape # (8, 5)
score.ndim  # 2
score.size # 40
score.dtype # dtype('int64')
score.itemsize # 8

2.2 ndarray的形状

a = np.array([[1,2,3],[4,5,6]])
b = np.array([1,2,3,4])
c = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])

a # array([[1, 2, 3],
b # array([1, 2, 3, 4])
c # array([[[1, 2, 3],[4, 5, 6]],[[1, 2, 3],[4, 5, 6]]])
a.shape # (2, 3)
b.shape # (4,)
c.shape # (2, 2, 3)

2.3 ndarray的类型

type(score.dtype)
<type 'numpy.dtype'>

# 指定类型
# 创建数组的时候指定类型
np.array([1.1, 2.2, 3.3], dtype="float32")

dtype是numpy是numpy.dtype类型,先看看对数组来说都有哪些类型

名称 描述 简写
np.bool 用一个字节存储的布尔类型(True或False) ‘b’
np.int8 一个字节大小,-128~127 ‘i’
np.int16 整数,-32768至32767 ‘i2’
np.int32 整数,-231至232 -1 ‘i4’
np.int64 整数,-263至263 -1 ‘i8’
np.uint8 无符号整数,0~255 ‘u’
np.uint16 无符号整数,0~65535 ‘u2’
np.uint32 无符号整数,0~2 ** 32 -1 ‘u4’
np.uint64 无符号整数,0~2 ** 64 -1 ‘u8’
np.float16 半精度浮点数:16位, 正负号1位, 指数5位, 精度10位 ‘f2’
np.float32 单精度浮点数:32位, 正负号1位, 指数8位, 精度23位 ‘f4’
np.float64 双度浮点数:64位, 正负号1位, 指数11位, 精度52位 ‘f8’
np.complex64 复数,分别用两个32位浮点数表示实部和虚部 ‘c8’
np.complex128 复数,分别用两个64位浮点数表示实部和虚部 ‘c16’
np.object_ python对象 ‘O’
np.string 字符串 ‘S’
np.unicode unicode类型 ‘U’

3. 基本操作

  • adarray.方法()
  • np.函数名()
    • np.array()

3.1 生成数组的方法

3.1.1 生成0和1

  • np.zeros(shape)
  • np.ones(shape)
# 1 生成0和1的数组
np.zeros(shape=(3, 4), dtype="float32")
-----------------------------------------
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]], dtype=float32)
np.ones(shape=[2, 3], dtype=np.int32)
-----------------------------------------
array([[1, 1, 1],
       [1, 1, 1]], dtype=int32)

3.1.2 从现有数组中生成

  • np.array() np.copy() 深拷贝
  • np.asarray() 浅拷贝
data1 = np.array(score)
data2 = np.asarray(score)
data3 = np.copy(score)
score[3, 1] = 10000

修改source,data2改变,data1,data3不改变

3.1.3 生成固定范围的数组

  • np.linspace(0, 10, 100)

    • [0, 10] 等距离 生成个数
  • np.arange(a, b, c)

    • range(a, b, c)
      • [a, b) c是步长
np.linspace(0, 10, 5)
# array([ 0. ,  2.5,  5. ,  7.5, 10. ])
np.arange(0, 11, 5)
# array([ 0,  5, 10])

3.1.4 生成随机数组

分布状况 - 直方图

  1. 均匀分布
    每组的可能性相等
  2. 正态分布
    σ 幅度、波动程度、集中程度、稳定性、离散程度
  • 均匀分布uniform
    • low:float类型,此概率的均值(对应着整个分布的中心centre)
    • scale:float类型,此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,越小越瘦高)
    • size:int or tuple of ints 输出的shape,默认位None,只输出一个值
import matplotlib.pyplot as plt
import numpy as np
data1 = np.random.uniform(low=-1, high=1, size=1000000)
array([-0.49795073, -0.28524454,  0.56473937, ...,  0.6141957 ,
        0.4149972 ,  0.89473129])
# 1、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 2、绘制直方图
plt.hist(data1, 1000)

# 3、显示图像
plt.show()

Python--Numpy简单了解_第3张图片

  • 正态分布normal
    • low:此概率的均值(对应着整个分布的中心centre)
    • scale:float此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,越小越瘦高)
    • size:int or tuple of ints 输出的shape,默认位None,只输出一个值
# 正态分布
data2 = np.random.normal(loc=1.75, scale=0.1, size=1000000)
# 1、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 2、绘制直方图
plt.hist(data2, 1000)

# 3、显示图像
plt.show()

Python--Numpy简单了解_第4张图片

3.2 数组的索引、切片

stock_change = np.random.normal(loc=0, scale=1, size=(8, 10))
# 返回结果
array([[-0.03469926,  1.68760014,  0.05915316,  2.4473136 , -0.61776756, -0.56253866, -1.24738637,  0.48320978,  1.01227938, -1.44509723],[-1.8391253 , -1.10142576,  0.09582268,  1.01589092, -1.20262068, 0.76134643, -0.76782097, -1.11192773,  0.81609586,  0.07659056],[-0.74293074, -0.7836588 ,  1.32639574, -0.52735663,  1.4167841 , 2.10286726, -0.21687665, -0.33073563, -0.46648617,  0.07926839],[ 0.45914676, -0.78330377, -1.10763289,  0.10612596, -0.63375855,-1.88121415,  0.6523779 , -1.27459184, -0.1828502 , -0.76587891],[-0.50413407, -1.35848099, -2.21633535, -1.39300681,  0.13159471, 0.65429138,  0.32207255,  1.41792558,  1.12357799, -0.68599018],[ 0.3627785 ,  1.00279706, -0.68137875, -2.14800075, -2.82895231,-1.69360338,  1.43816168, -2.02116677,  1.30746801,  1.41979011],[-2.93762047,  0.22199761,  0.98788788,  0.37899235,  0.28281886,-1.75837237, -0.09262863, -0.92354076,  1.11467277,  0.76034531],[-0.39473551,  0.28402164, -0.15729195, -0.59342945, -1.0311294 ,-1.07651428,  0.18618331,  1.5780439 ,  1.31285558,  0.10777784]])

# 获取第一个股票的前3个交易日的涨跌幅数据
stock_change[0, :3]
# 返回结果
array([-0.03469926,  1.68760014,  0.05915316])

一维、二维、三维的数组如何索引?

# 三维,一维
a1 = np.array([ [[1,2,3],[4,5,6]], [[12,3,34],[5,6,7]]])
# 返回结果
array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[12,  3, 34],
        [ 5,  6,  7]]])
# 索引、切片
a1.shape # (2, 2, 3)
a1[1, 0, 2] # 34

# 修改
a1[1, 0, 2] = 100000
# 返回结果
array([[[     1,      2,      3],
        [     4,      5,      6]],

       [[    12,      3, 100000],
        [     5,      6,      7]]])

3.3 形状修改

  • ndarray.reshape(shape) 返回新的ndarray,原始数据没有改变
  • ndarray.resize(shape) 没有返回值,对原始的ndarray进行了修改
  • ndarray.T 转置 行变成列,列变成行

  • ndarray.reshape(shape)返回新的ndarray,原始数据没有改变
# 需求:让刚才的股票行、日期列反过来,变成日期行,股票列
stock_change
# 返回结果
array(
[[-0.03469926,  1.68760014,  0.05915316,  2.4473136 , -0.61776756,
-0.56253866, -1.24738637,  0.48320978,  1.01227938, -1.44509723],
[-1.8391253 , -1.10142576,  0.09582268,  1.01589092, -1.20262068,
0.76134643, -0.76782097, -1.11192773,  0.81609586,  0.07659056],
[-0.74293074, -0.7836588 ,  1.32639574, -0.52735663,  1.4167841 ,
2.10286726, -0.21687665, -0.33073563, -0.46648617,  0.07926839],
[ 0.45914676, -0.78330377, -1.10763289,  0.10612596, -0.63375855,
-1.88121415,  0.6523779 , -1.27459184, -0.1828502 , -0.76587891],
[-0.50413407, -1.35848099, -2.21633535, -1.39300681,  0.13159471,
0.65429138,  0.32207255,  1.41792558,  1.12357799, -0.68599018],
[ 0.3627785 ,  1.00279706, -0.68137875, -2.14800075, -2.82895231,
-1.69360338,  1.43816168, -2.02116677,  1.30746801,  1.41979011],
[-2.93762047,  0.22199761,  0.98788788,  0.37899235,  0.28281886,
-1.75837237, -0.09262863, -0.92354076,  1.11467277,  0.76034531],
[-0.39473551,  0.28402164, -0.15729195, -0.59342945, -1.0311294 ,
-1.07651428,  0.18618331,  1.5780439 ,  1.31285558,  0.10777784]])

stock_change.reshape((10, 8))
# 返回结果
array(
[[-0.03469926,  1.68760014,  0.05915316,  2.4473136 , -0.61776756,
-0.56253866, -1.24738637,  0.48320978],
[ 1.01227938, -1.44509723, -1.8391253 , -1.10142576,  0.09582268,
1.01589092, -1.20262068,  0.76134643],
[-0.76782097, -1.11192773,  0.81609586,  0.07659056, -0.74293074,
-0.7836588 ,  1.32639574, -0.52735663],
[ 1.4167841 ,  2.10286726, -0.21687665, -0.33073563, -0.46648617,
0.07926839,  0.45914676, -0.78330377],
[-1.10763289,  0.10612596, -0.63375855, -1.88121415,  0.6523779 ,
-1.27459184, -0.1828502 , -0.76587891],
[-0.50413407, -1.35848099, -2.21633535, -1.39300681,  0.13159471,
0.65429138,  0.32207255,  1.41792558],
[ 1.12357799, -0.68599018,  0.3627785 ,  1.00279706, -0.68137875,
-2.14800075, -2.82895231, -1.69360338],
[ 1.43816168, -2.02116677,  1.30746801,  1.41979011, -2.93762047,
0.22199761,  0.98788788,  0.37899235],
[ 0.28281886, -1.75837237, -0.09262863, -0.92354076,  1.11467277,
0.76034531, -0.39473551,  0.28402164],
[-0.15729195, -0.59342945, -1.0311294 , -1.07651428,  0.18618331,
1.5780439 ,  1.31285558,  0.10777784]])
  • ndarray.resize(shape)没有返回值,对原始的ndarray进行了修改
stock_change.shape # (8, 10)
stock_change.resize((10, 8))
stock_change.shape # (10, 8)
  • ndarray.T转置 行变成列,列变成行
stock_change.T

3.4 类型修改

  • ndarray.astype(type)
  • ndarray序列化到本地
  • ndarray.tostring()
stock_change.astype("int32")
# 返回结果
array([[ 0,  1,  0,  2,  0,  0, -1,  0,  1, -1],
       [-1, -1,  0,  1, -1,  0,  0, -1,  0,  0],
       [ 0,  0,  1,  0,  1,  2,  0,  0,  0,  0],
       [ 0,  0, -1,  0,  0, -1,  0, -1,  0,  0],
       [ 0, -1, -2, -1,  0,  0,  0,  1,  1,  0],
       [ 0,  1,  0, -2, -2, -1,  1, -2,  1,  1],
       [-2,  0,  0,  0,  0, -1,  0,  0,  1,  0],
       [ 0,  0,  0,  0, -1, -1,  0,  1,  1,  0]], dtype=int32)

stock_change.tobytes()
b'\x95&\x99\xdd\x19\xc4\xa1\xbfm8\x88\x00i\x00\xfb?\x92\xbc\x81\xa1RI\xae?\xa2\x95x&\x19\x94\x03@\x9f?\xbev\xc0\xc4\xe3\xbf\x87\xf4H\x13Q\x00\xe2\xbf\x9eM\x85hK\xf5\xf3\xbf\x17mZ\xb2\xe8\xec\xde?U\xca\xd4\xdbK2\xf0?G\xc6\xbbD\x1e\x1f\xf7\xbf\x9f-\xb0\xa5\x0em\xfd\xbf\x9b\xd0h\x9dp\x9f\xf1\xbfyH\x8e\xc3\xd5\x87\xb8?\x1d\x89v\xd5\x16A\xf0?\x89Aj-\xef=\xf3\xbf\xbc\x8ea/\xf3\\\xe8?\x94\xb8\xbaJ\xfd\x91\xe8\xbfv\xc0\x92\xbct\xca\xf1\xbf\x82\x82\x19\x11u\x1d\xea?\xf2.\x96Qp\x9b\xb3?g\xed\xef\xb0\x16\xc6\xe7\xbf\xf2\xbf!\x9c\xbb\x13\xe9\xbf\x7fv\x1e\xbd\xea8\xf5?\x1e \x9d\x02\x1b\xe0\xe0\xbf?\x99O\xce%\xab\xf6?\x84;\xb9\x11\xac\xd2\x00@p\xe3\xa07\x9d\xc2\xcb\xbfop\x94\xc4\xc5*\xd5\xbfN\x15)\xca\xe8\xda\xdd\xbf4\xa8\x8b\xf1\xeeJ\xb4?Qd\x8e\x1c\xa9b\xdd?\xc8\x92\xb6\x10\xd3\x10\xe9\xbf\xf1\x80\x87C\xdd\xb8\xf1\xbf\x18\x02B \x12+\xbb?Xv\xb4\x02\xc0G\xe4\xbf\xa6,\x8a\x02t\x19\xfe\xbf\xb4\xc9\xaf\x9cG\xe0\xe4?wCsj\xbad\xf4\xbf\xbc\xb1\xd5\xa9\xa2g\xc7\xbf\xbc\xc6\x8d{\x14\x82\xe8\xbf>\xf7\xae\xc6\xdd!\xe0\xbf\xacB\x9c\x90V\xbc\xf5\xbfb\xae\xfa\x06\x0e\xbb\x01\xc0_B\xe1\x82\xc1I\xf6\xbfw\x9f\xb6m\x18\xd8\xc0?\x93\xcb\x8e{\xf4\xef\xe4?\xfe\xc1\xba,\xd6\x9c\xd4?k\x85)\xbc\xd2\xaf\xf6?{g\x82\xea,\xfa\xf1?s}\xaf\xad\xa1\xf3\xe5\xbfD(cM\xc37\xd7?(\x1a\xff\xect\x0b\xf0?7e\x80\xce\xda\xcd\xe5\xbf"\xd5\xe1\x03\x1b/\x01\xc0\x94\x85?\xbf\xb1\xa1\x06\xc0w\x08\x14\xdc\xff\x18\xfb\xbf\x9f\x1eL\xd2\xb5\x02\xf7?\xb0-5{Y+\x00\xc0;\xf5<\x94c\xeb\xf4?a\x8f\xb1\xd6u\xb7\xf6?%Kr)?\x80\x07\xc0\x9e\x1c%\xedjj\xcc?F\xa0C\t\xc7\x9c\xef?\xf3\xc3\xfd\x1eiA\xd8?\xcc\x9e\x84D\xb4\x19\xd2?\xdd$J\x10K"\xfc\xbf\xe6E\xb3\x95\x82\xb6\xb7\xbf\x0cN\xa4Z\xa5\x8d\xed\xbf\x96\xdd\xee\x1c\xb3\xd5\xf1?\x05\x8c\x12\xb0\xbfT\xe8?/\xa5\x1a\xb9XC\xd9\xbf~Z!\x1ci-\xd2?\x1f\xe4\xe3\x83$"\xc4\xbf_&\xc5\xc0_\xfd\xe2\xbf\xbf\x16\xac\x8b\x81\x7f\xf0\xbf\xf7\xba)\tg9\xf1\xbf\xb7q\x8c\xd7\xda\xd4\xc7?\x98P\xb7\xf4\xaa?\xf9?\x8c\x98P\xdbt\x01\xf5?t\xd8 -T\x97\xbb?'

3.5 数组的去重

  • set():只能处理一维
  • np.unique()
temp = np.array([[1, 2, 3, 4],[3, 4, 5, 6]])
# 返回结果
array([[1, 2, 3, 4],
       [3, 4, 5, 6]])
np.unique(temp)
# 返回结果
array([1, 2, 3, 4, 5, 6])

set(temp.flatten()) # 将多维降维成一维,然后用set去重 只能处理一维
# 返回结果
{1, 2, 3, 4, 5, 6}

4. ndarray运算

4.1 逻辑运算

  • 布尔索引
  • 通用判断函数
    • np.all(布尔值)
      • 只要有一个False就返回False,只有全是True才返回True
    • np.any()
      • 只要有一个True就返回True,只有全是False才返回False
  • np.where(三元运算符)
    • np.where(布尔值, True的位置的值, False的位置的值)
stock_change = np.random.normal(loc=0, scale=1, size=(8, 10))
# 返回结果
array([[ 1.46338968, -0.45576704,  0.29667843,  0.16606916,  0.46446682,0.83167611, -1.35770374, -0.65001192,  1.38319911, -0.93415832],[ 0.36775845,  0.24078108,  0.122042  ,  1.19314047,  1.34072589,0.09361683,  1.19030379,  1.4371421 , -0.97829363, -0.11962767],[-1.48252741, -0.69347186,  0.91122464, -0.30606473,  0.41598897,0.79542753, -0.01447862, -1.49943117, -0.23285809,  0.42806777],[ 0.39438905, -1.31770556,  1.7344868 , -1.52812773, -0.47703227,-0.3795497 , -0.88422651,  1.37510973, -0.93622775,  0.49257673],[-0.9822216 , -1.09482936, -0.81834523,  0.57335311,  0.97390091,0.05314952, -0.58316743,  0.19264426,  0.02081861,  0.84445247],[ 0.41739964, -0.26826893, -0.70003442, -0.58593912,  0.86546709,-1.30304864,  0.05254567, -1.73976785, -0.43532247,  0.4760526 ],[-0.21739882,  0.52007085, -0.60160491,  0.57108639,  1.03303301,-0.69172579,  1.04716985, -0.22985706, -0.11125069,  0.87722923],[-0.183266  ,  0.56273065,  0.29357786, -0.19343363, -1.54547303,-0.31977163, -0.00659025,  0.48160678,  0.88443604, -0.48456825]])
--------------------------------------------------
# 逻辑判断, 如果涨跌幅大于0.5就标记为True 否则为False
stock_change > 0.5
# 返回结果
array([[ True, False, False, False, False,  True, False, False,  True,False],[False, False, False,  True,  True, False,  True,  True, False,False],[False, False,  True, False, False,  True, False, False, False,False],[False, False,  True, False, False, False, False,  True, False,False],[False, False, False,  True,  True, False, False, False, False,True],[False, False, False, False,  True, False, False, False, False,False],[False,  True, False,  True,  True, False,  True, False, False,True],[False,  True, False, False, False, False, False, False,  True,False]])
--------------------------------------------------
stock_change[stock_change > 0.5] = 1.1
# 返回结果
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916,  0.46446682,1.1       , -1.35770374, -0.65001192,  1.1       , -0.93415832],[ 0.36775845,  0.24078108,  0.122042  ,  1.1       ,  1.1       ,0.09361683,  1.1       ,  1.1       , -0.97829363, -0.11962767],[-1.48252741, -0.69347186,  1.1       , -0.30606473,  0.41598897,1.1       , -0.01447862, -1.49943117, -0.23285809,  0.42806777],[ 0.39438905, -1.31770556,  1.1       , -1.52812773, -0.47703227,-0.3795497 , -0.88422651,  1.1       , -0.93622775,  0.49257673],[-0.9822216 , -1.09482936, -0.81834523,  1.1       ,  1.1       ,0.05314952, -0.58316743,  0.19264426,  0.02081861,  1.1       ],[ 0.41739964, -0.26826893, -0.70003442, -0.58593912,  1.1       ,-1.30304864,  0.05254567, -1.73976785, -0.43532247,  0.4760526 ],[-0.21739882,  1.1       , -0.60160491,  1.1       ,  1.1       ,-0.69172579,  1.1       , -0.22985706, -0.11125069,  1.1       ],[-0.183266  ,  1.1       ,  0.29357786, -0.19343363, -1.54547303,-0.31977163, -0.00659025,  0.48160678,  1.1       , -0.48456825]])

# 判断stock_change[0:2, 0:5]是否全是上涨的
stock_change[0:2, 0:5] > 0
# 返回结果
array([[ True, False,  True,  True,  True],
       [ True,  True,  True,  True,  True]])
--------------------------------------------------      
np.all(stock_change[0:2, 0:5] > 0)
# 返回结果
False
--------------------------------------------------
# 判断前5只股票这段期间是否有上涨的
np.any(stock_change[:5, :] > 0)
# 返回结果
True
# 判断前四个股票前四天的涨跌幅 大于0的置为1,否则为0
temp = stock_change[:4, :4]
# 返回结果
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ],
       [-1.48252741, -0.69347186,  1.1       , -0.30606473],
       [ 0.39438905, -1.31770556,  1.1       , -1.52812773]])
--------------------------------------------------
np.where(temp > 0, 1, 0)
# 返回结果
array([[1, 0, 1, 1],
       [1, 1, 1, 1],
       [0, 0, 1, 0],
       [1, 0, 1, 0]])
--------------------------------------------------
temp > 0
# 返回结果
array([[ True, False,  True,  True],
       [ True,  True,  True,  True],
       [False, False,  True, False],
       [ True, False,  True, False]])
--------------------------------------------------
np.where([[ True, False,  True,  True],
       [ True,  True,  True,  True],
       [False, False,  True, False],
       [ True, False,  True, False]], 1, 0)
# 返回结果
array([[1, 0, 1, 1],
       [1, 1, 1, 1],
       [0, 0, 1, 0],
       [1, 0, 1, 0]])
--------------------------------------------------
# 判断前四个股票前四天的涨跌幅 大于0.5并且小于1的,换为1,否则为0
# 判断前四个股票前四天的涨跌幅 大于0.5或者小于-0.5的,换为1,否则为0
# (temp > 0.5) and (temp < 1)
np.logical_and(temp > 0.5, temp < 1)
# 返回结果
array([[False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False]])
--------------------------------------------------
np.where([[False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False]], 1, 0)
# 返回结果
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
--------------------------------------------------
np.where(np.logical_and(temp > 0.5, temp < 1), 1, 0)
# 返回结果
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
--------------------------------------------------
np.logical_or(temp > 0.5, temp < -0.5)
# 返回结果
array([[ True, False, False, False],
       [False, False, False,  True],
       [ True,  True,  True, False],
       [False,  True,  True,  True]])
--------------------------------------------------
np.where(np.logical_or(temp > 0.5, temp < -0.5), 11, 3)
# 返回结果
array([[11,  3,  3,  3],
       [ 3,  3,  3, 11],
       [11, 11, 11,  3],
       [ 3, 11, 11, 11]])

4.2 统计运算

axis轴的取值并不一定,Numpy中不同的API轴的值不一样,
在这里,axis 0代表行,1代表列

  • 统计指标函数
    • min, max, mean, median, var, std
    • np.函数名
    • ndarray.方法名
  • 返回最大值、最小值所在位置
    • np.argmax(temp, axis=)
    • np.argmin(temp, axis=)
# 前四只股票前四天的最大涨幅
temp # shape: (4, 4) 0  1
# 返回结果
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ],
       [-1.48252741, -0.69347186,  1.1       , -0.30606473],
       [ 0.39438905, -1.31770556,  1.1       , -1.52812773]])
--------------------------------------------------
temp.max(axis=0)# 按列求最大值
# 返回结果
array([1.1       , 0.24078108, 1.1       , 1.1       ])
--------------------------------------------------
np.max(temp, axis=-1)
# 返回结果
array([1.1, 1.1, 1.1, 1.1])
--------------------------------------------------
np.argmax(temp, axis=-1)
# 返回结果
array([0, 3, 2, 2])

5. 数组间运算

5.1 场景

Python--Numpy简单了解_第5张图片

5.2 数组与数的运算

  • +-*/
arr = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
arr / 10
# 返回结果
array([[0.1, 0.2, 0.3, 0.2, 0.1, 0.4],
       [0.5, 0.6, 0.1, 0.2, 0.3, 0.1]])

5.3 数组与数组的运算

arr1 = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
arr2 = np.array([[1, 2, 3, 4], [3, 4, 5, 6]])

array([[1, 2, 3, 2, 1, 4],
       [5, 6, 1, 2, 3, 1]])

5.4 广播机制

执行broadcast的前提在于,两个ndarray执行的是element-wise的运算,Broadcast机制的功能是为了方便不同形状的ndarray(numpy库的核心数据结构)进行数学运算

  • 维度相等
  • shape(其中相对应的一个地方为1)
    广播的原则:如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失和(或)长度为1的维度上进行。

5.5 矩阵运算

1 什么是矩阵
 矩阵matrix 二维数组
 矩阵 & 二维数组
 两种方法存储矩阵
     1)ndarray 二维数组
         矩阵乘法:
             np.matmul
             np.dot
     2)matrix数据结构
2 矩阵乘法运算
 形状
     (m, n) * (n, l) = (m, l)
 运算规则
     A (2, 3) B(3, 2)
     A * B = (2, 2)
# ndarray存储矩阵
data = np.array([[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]])
# matrix存储矩阵
data_mat = np.mat([[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]])
type(data_mat)
numpy.matrixlib.defmatrix.matrix
data # (8, 2) * (2, 1) = (8, 1)
np.matmul(data, weights)
array([[84.2],
       [80.6],
       [80.1],
       [90. ],
       [83.2],
       [87.6],
       [79.4],
       [93.4]])
np.dot(data, weights)       
array([[84.2],
       [80.6],
       [80.1],
       [90. ],
       [83.2],
       [87.6],
       [79.4],
       [93.4]])
data_mat * weights_mat
matrix([[84.2],
        [80.6],
        [80.1],
        [90. ],
        [83.2],
        [87.6],
        [79.4],
        [93.4]])
data @ weights
array([[84.2],
       [80.6],
       [80.1],
       [90. ],
       [83.2],
       [87.6],
       [79.4],
       [93.4]])

6. 合并、分割

6.1 合并

  • numpy.hstack(tup)
    Python--Numpy简单了解_第6张图片
  • numpy.vstack(tup)
    Python--Numpy简单了解_第7张图片
  • numpy.concatenate((a1, a2 , ...), axis=0)
    Python--Numpy简单了解_第8张图片
a = stock_change[:2, 0:4]
b = stock_change[4:6, 0:4]

a
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ]])
       
a.shape # (2, 4)

a.reshape((-1, 2))
array([[ 1.1       , -0.45576704],
       [ 0.29667843,  0.16606916],
       [ 0.36775845,  0.24078108],
       [ 0.122042  ,  1.1       ]])

b
array([[-0.9822216 , -1.09482936, -0.81834523,  1.1       ],
       [ 0.41739964, -0.26826893, -0.70003442, -0.58593912]])

np.hstack((a, b))
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916, -0.9822216 ,
        -1.09482936, -0.81834523,  1.1       ],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ,  0.41739964,
        -0.26826893, -0.70003442, -0.58593912]])

np.concatenate((a, b), axis=1)
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916, -0.9822216 ,
        -1.09482936, -0.81834523,  1.1       ],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ,  0.41739964,
        -0.26826893, -0.70003442, -0.58593912]])

np.vstack((a, b))
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ],
       [-0.9822216 , -1.09482936, -0.81834523,  1.1       ],
       [ 0.41739964, -0.26826893, -0.70003442, -0.58593912]])

np.concatenate((a, b), axis=0)
array([[ 1.1       , -0.45576704,  0.29667843,  0.16606916],
       [ 0.36775845,  0.24078108,  0.122042  ,  1.1       ],
       [-0.9822216 , -1.09482936, -0.81834523,  1.1       ],
       [ 0.41739964, -0.26826893, -0.70003442, -0.58593912]])

6.2 分割

7. IO操作与数据处理

7.1 Numpy读取

data = np.genfromtxt("test.csv", delimiter=",")

array([[  nan,   nan,   nan,   nan],
       [  1. , 123. ,   1.4,  23. ],
       [  2. , 110. ,   nan,  18. ],
def fill_nan_by_column_mean(t):
    for i in range(t.shape[1]):
        # 计算nan的个数
        nan_num = np.count_nonzero(t[:, i][t[:, i] != t[:, i]])
        if nan_num > 0:
            now_col = t[:, i]
            # 求和
            now_col_not_nan = now_col[np.isnan(now_col) == False].sum()
            # 和/个数
            now_col_mean = now_col_not_nan / (t.shape[0] - nan_num)
            # 赋值给now_col
            now_col[np.isnan(now_col)] = now_col_mean
            # 赋值给t,即更新t的当前列
            t[:, i] = now_col
    return t

7.2 如何处理缺失值

两种思路:

  • 直接删除含有缺失值的样本
  • 替换/插补
    • 按列求平均,用平均值进行填补

你可能感兴趣的:(python,python,numpy)