【高等数学基础进阶】导数与微分

文章目录

    • 一、导数与微分的概念
      • 1. 导数的概念
      • 2. 微分的概念
      • 3. 导数与微分的几何意义
      • 4. 连续可导可微之间的关系
    • 二、导数公式及求导法则
      • 1. 基本初等函数的导数公式
      • 2. 求导法则
        • 有理运算法则
        • 复合函数求导法
        • 隐函数求导法
        • 反函数的导数
        • 参数方程求导法
        • 对数求导法
    • 三、高阶导数
    • 常考题型与经典例题
      • 导数定义
      • 复合函数、隐函数、参数方程求导
      • 高阶导数
      • 导数应用
        • 相关变化率

一、导数与微分的概念

1. 导数的概念

定义1(导数)
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_{0})=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
x 0 + Δ x = x x_{0}+\Delta x=x x0+Δx=x
f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_{0})=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} f(x0)=xx0limxx0f(x)f(x0)
Δ x = h \Delta x=h Δx=h
f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_{0})=\lim_{h\to 0}\frac{f(x_{0}+h)-f(x_{0})}{h} f(x0)=h0limhf(x0+h)f(x0)

定义2(左导数):
f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_{-}(x_{0})=\lim_{\Delta x\to 0^{-}}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0^{-}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)

定义3(右导数):
f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_{+}(x_{0})=\lim_{\Delta x\to 0^{+}}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0^{+}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f+(x0)=Δx0+limΔxΔy=Δx0+limΔxf(x0+Δx)f(x0)

导数与 f ( x 0 ) f(x_{0}) f(x0)以及其邻域的函数值有关,左导数与 f ( x 0 ) f(x_{0}) f(x0)以及其左邻域的函数值有关,右导数与 f ( x 0 ) f(x_{0}) f(x0)以及其右邻域的函数值有关

定理1:可导 ⇔ \Leftrightarrow 左右导数都存在且相等

定义4(区间上可导及导函数)

例1:设函数 f ( x ) f(x) f(x)对任意 x x x均满足等式 f ( 1 + x ) = a f ( x ) f(1+x)=af(x) f(1+x)=af(x),且有 f ′ ( 0 ) = b f'(0)=b f(0)=b,其中 a , b a,b a,b为非零常数,则 f ′ ( 1 ) = f'(1)= f(1)=()

f ′ ( 1 ) = lim ⁡ Δ x → 0 f ( 1 + Δ x ) − f ( 1 ) Δ x 为了使用 f ( 1 + x ) = a f ( x ) ,用另一种也行 = lim ⁡ Δ x → 0 a f ( Δ x ) − f ( 1 ) Δ x = lim ⁡ Δ x → 0 a f ( Δ x ) − a f ( 0 ) Δ x = a lim ⁡ Δ x → 0 f ( Δ x ) − f ( 0 ) Δ x = a f ′ ( 0 ) = a b \begin{aligned} f'(1)&=\lim_{\Delta x\to0}\frac{f(1+\Delta x)-f(1)}{\Delta x}\\ &为了使用f(1+x)=af(x),用另一种也行\\ &=\lim_{\Delta x\to0}\frac{af(\Delta x)-f(1)}{\Delta x}\\ &=\lim_{\Delta x\to0}\frac{af(\Delta x)-af(0)}{\Delta x}\\ &=a\lim_{\Delta x\to0}\frac{f(\Delta x)-f(0)}{\Delta x}\\ &=af'(0)=ab \end{aligned} f(1)=Δx0limΔxf(1+Δx)f(1)为了使用f(1+x)=af(x),用另一种也行=Δx0limΔxaf(Δx)f(1)=Δx0limΔxaf(Δx)af(0)=aΔx0limΔxf(Δx)f(0)=af(0)=ab

2. 微分的概念

定义5(微分):如果 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_{0}+\Delta x)-f(x_{0}) Δy=f(x0+Δx)f(x0)可以表示为
Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) \Delta y=A \Delta x+o(\Delta x)\quad(\Delta x\to0) Δy=AΔx+o(Δx)(Δx0)
则称函数 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处可微,称 A Δ x A \Delta x AΔx为微分,记为
d y = A Δ x dy=A \Delta x dy=AΔx

定理2:函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处可微的充分必要条件是 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处可导,且有
d y = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy=f'(x_{0})\Delta x=f'(x_{0})dx dy=f(x0)Δx=f(x0)dx

3. 导数与微分的几何意义

导数的几何意义:导数 f ′ ( x 0 ) f'(x_{0}) f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))处切线的斜率
切线方程
y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_{0})=f'(x_{0})(x-x_{0}) yf(x0)=f(x0)(xx0)
法线方程
y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_{0})=-\frac{1}{f'(x_{0})}(x-x_{0}) yf(x0)=f(x0)1(xx0)

微分的几何意义:微分 d y = f ′ ( x 0 ) d x dy=f'(x_{0})dx dy=f(x0)dx在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)的切线上的增量

![[附件/Pasted image 20220812203603.png|300]]
Δ y \Delta y Δy表示曲线上的改变量, d y dy dy表示切线上的改变量
用微分代替函数改变量就是在微小的局部用均匀变化代替非均匀变化

4. 连续可导可微之间的关系

连续不一定可导,可导一定连续;连续不一定可微,可微一定连续。可导可微等价

例2:可导 ⇒ \Rightarrow 可微

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⇒ f ( x 0 + Δ x ) − f ( x 0 ) Δ x = f ′ ( x 0 ) + α ⇒ f ( x 0 + Δ x ) − f ( x 0 ) = f ′ ( x 0 ) Δ x + α Δ x = f ′ ( x 0 ) Δ x + o ( Δ x ) \begin{aligned} f'(x_{0})&=\lim_{\Delta x\to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}\\ &\Rightarrow\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}=f'(x_{0})+\alpha\nonumber\\ &\Rightarrow f(x_{0}+\Delta x)-f(x_{0}) =f'(x_{0})\Delta x+\alpha \Delta x=f'(x_{0})\Delta x+o(\Delta x) \end{aligned} f(x0)=Δx0limΔxf(x0+Δx)f(x0)Δxf(x0+Δx)f(x0)=f(x0)+αf(x0+Δx)f(x0)=f(x0)Δx+αΔx=f(x0)Δx+o(Δx)
证毕

f ( x ) 在 x 0 ( 的某邻域 ) 可导 { 能推出 f ( x ) 在 x 0 点连续 推不出 f ′ ( x ) 在 x 0 点连续 推不出 lim ⁡ x → x 0 f ′ ( x ) 存在 f(x)在x_{0}(的某邻域)可导 \begin{cases} 能推出f(x)在x_{0}点连续 \\ 推不出f'(x)在x_{0}点连续 \\ 推不出\lim\limits_{x\to x_{0}}f'(x)存在 \end{cases} f(x)x0(的某邻域)可导 能推出f(x)x0点连续推不出f(x)x0点连续推不出xx0limf(x)存在

例3: f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases}x^{2}\sin \frac{1}{x},x\ne0\\0,x=0\end{cases} f(x)={x2sinx1,x=00,x=0
证明: f ( x ) f(x) f(x)处处可导, lim ⁡ x → 0 f ′ ( x ) \lim\limits_{x\to0}f'(x) x0limf(x)不存在

x ≠ 0 x\ne0 x=0
f ′ ( 0 ) = 2 x sin ⁡ 1 x − cos ⁡ 1 x f'(0)=2x\sin \frac{1}{x}-\cos \frac{1}{x} f(0)=2xsinx1cosx1
x = 0 x=0 x=0
f ′ ( 0 ) = lim ⁡ x → 0 x 2 sin ⁡ 1 x − 0 x = 0 f'(0)=\lim_{x\to0}\frac{x^{2}\sin \frac{1}{x}-0}{x}=0 f(0)=x0limxx2sinx10=0
显然 lim ⁡ x → 0 f ′ ( x ) \lim\limits_{x\to0}f'(x) x0limf(x)不存在

例4:设 f ( x ) f(x) f(x)二阶可导, f ( 0 ) = 0. , f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 2 f(0)=0.,f'(0)=1,f''(0)=2 f(0)=0.,f(0)=1,f′′(0)=2,求极限 lim ⁡ x → 0 f ( x ) − x x 2 \lim\limits_{x\to0}\frac{f(x)-x}{x^{2}} x0limx2f(x)x

错误解法的解释
lim ⁡ x → 0 f ( x ) − x x 2 = lim ⁡ x → 0 f ′ ( x ) − 1 2 x lim ⁡ x → 0 f ′ ′ ( x ) 未必存在 = lim ⁡ x → 0 f ′ ′ ( x ) 2 f ′ ′ ( x ) 未必连续 = f ′ ′ ( 0 ) 2 = 1 \begin{aligned} \lim\limits_{x\to0}\frac{f(x)-x}{x^{2}}&=\lim\limits_{x\to0}\frac{f'(x)-1}{2x}\\ &\lim\limits_{x\to0}f''(x)未必存在\\ &=\lim\limits_{x\to0}\frac{f''(x)}{2}\\ &f''(x)未必连续 &=\frac{f''(0)}{2}\\ &=1 \end{aligned} x0limx2f(x)x=x0lim2xf(x)1x0limf′′(x)未必存在=x0lim2f′′(x)f′′(x)未必连续=1=2f′′(0)

正确解法
![[数学基础/高等数学/基础进阶/1.函数、极限、连续/极限#^1]]

使用原则
f ( x ) , n f(x),n f(x),n阶可导,洛必达法则只能用到出现 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n1)(x)
f ( x ) , n f(x),n f(x),n阶连续可导,洛必达法则能用到出现 f ( n ) ( x ) f^{(n)}(x) f(n)(x)

例5:设 f ( x ) = { x λ cos ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases}x^{\lambda}\cos \frac{1}{x},x\ne0\\0,x=0\end{cases} f(x)={xλcosx1,x=00,x=0,其导函数在 x = 0 x=0 x=0处连续,则 λ \lambda λ取值范围是()

函数在 x = x 0 x=x_{0} x=x0处连续,即 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}}f(x)=f(x_{0}) xx0limf(x)=f(x0)

x = 0 x=0 x=0
f ′ ( 0 ) = lim ⁡ x → 0 x λ cos ⁡ 1 x − 0 x = lim ⁡ x → 0 x λ − 1 cos ⁡ 1 x f'(0)=\lim_{x\to0}\frac{x^{\lambda}\cos \frac{1}{x}-0}{x}=\lim_{x\to0}x^{\lambda-1}\cos \frac{1}{x} f(0)=x0limxxλcosx10=x0limxλ1cosx1
若要导函数在 x = 0 x=0 x=0处连续,首先要 f ′ ( 0 ) f'(0) f(0)存在,因此 λ − 1 > 0 \lambda-1>0 λ1>0,即 λ > 1 \lambda>1 λ>1,此时 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0
x ≠ 0 x\ne0 x=0
f ′ ( x ) = λ x λ − 1 cos ⁡ 1 x + x λ − 2 sin ⁡ 1 x f'(x)=\lambda x^{\lambda-1}\cos \frac{1}{x}+x^{\lambda-2}\sin \frac{1}{x} f(x)=λxλ1cosx1+xλ2sinx1
f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,有 λ x λ − 1 cos ⁡ 1 x + x λ − 2 sin ⁡ 1 x = 0 \lambda x^{\lambda-1}\cos \frac{1}{x}+x^{\lambda-2}\sin \frac{1}{x}=0 λxλ1cosx1+xλ2sinx1=0,得 λ > 2 \lambda>2 λ>2
综上 λ > 2 \lambda>2 λ>2

二、导数公式及求导法则

1. 基本初等函数的导数公式

( C ) ′ = 0 ( x α ) ′ = α x α − 1 ( a x ) ′ = a x ln ⁡ a ( e x ) ′ = e x ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( ln ⁡ ∣ x ∣ ) ′ = 1 x ( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( tan ⁡ x ) ′ = sec ⁡ 2 x ( cot ⁡ x ) ′ = − csc ⁡ 2 x ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot  x ) ′ = − 1 1 + x 2 \begin{aligned} (C)'&=0\\ (x^{\alpha})'&=\alpha x^{\alpha-1}\\ (a^{x})'&=a^{x}\ln a\\ (e^{x})'&=e^{x}\\ (\log_{a}x)'&=\frac{1}{x\ln a}\\ (\ln|x|)'&=\frac{1}{x}\\ (\sin x)'&=\cos x\\ (\cos x)'&=-\sin x\\ (\tan x)'&=\sec^{2}x\\ (\cot x)'&=-\csc^{2}x\\ (\sec x)'&=\sec x\tan x\\ (\csc x)'&=-\csc x\cot x\\ (\arcsin x)'&=\frac{1}{\sqrt{1-x^{2}}}\\ (\arccos x)'&=- \frac{1}{\sqrt{1-x^{2}}}\\ (\arctan x)'&= \frac{1}{1+x^{2}}\\ (\text{arccot }x)'&= - \frac{1}{1+x^{2}} \end{aligned} (C)(xα)(ax)(ex)(logax)(lnx)(sinx)(cosx)(tanx)(cotx)(secx)(cscx)(arcsinx)(arccosx)(arctanx)(arccot x)=0=αxα1=axlna=ex=xlna1=x1=cosx=sinx=sec2x=csc2x=secxtanx=cscxcotx=1x2 1=1x2 1=1+x21=1+x21

2. 求导法则

有理运算法则

  • ( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)=u±v
  • ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v})'=\frac{u'v-uv'}{v^{2}}\quad(v\ne0) (vu)=v2uvuv(v=0)

复合函数求导法

u = ϕ ( x ) , y = f ( u ) u=\phi(x),y=f(u) u=ϕ(x),y=f(u)可导,则 y = f [ ϕ ( x ) ] y=f[\phi(x)] y=f[ϕ(x)]
d y d x = d y d u ⋅ d u d x = f ′ ( u ) ϕ ′ ( x ) \frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}=f'(u)\phi'(x) dxdy=dudydxdu=f(u)ϕ(x)

设函数 f ( x ) f(x) f(x)可导

  • f ( x ) f(x) f(x)是奇函数,则 f ′ ( x ) f'(x) f(x)是偶函数
  • f ( x ) f(x) f(x)是偶函数,则 f ′ ( x ) f'(x) f(x)是奇函数
  • f ( x ) f(x) f(x)是周期函数,则 f ′ ( x ) f'(x) f(x)也是周期函数

隐函数求导法

F ( x , y ) = 0 , d y d x = − F x F y F(x,y)=0,\quad\frac{dy}{dx}=-\frac{F_{x}}{F_{y}} F(x,y)=0,dxdy=FyFx

反函数的导数

y = f ( x ) y=f(x) y=f(x)可导,且 f ′ ( x ) ≠ 0 f'(x)\ne0 f(x)=0,则其反函数 x = ϕ ( y ) x=\phi(y) x=ϕ(y)也可导,且
ϕ ′ ( x ) = 1 f ′ ( x ) , d x d y = 1 d y d x \phi'(x)= \frac{1}{f'(x)},\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}} ϕ(x)=f(x)1,dydx=dxdy1

例6:证明: ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^{2}}} (arcsinx)=1x2 1

d y d x = 1 d x d y = 1 cos ⁡ y = 1 1 − sin ⁡ 2 y = 1 1 − x 2 \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin^{2}y}}=\frac{1}{\sqrt{1-x^{2}}} dxdy=dydx1=cosy1=1sin2y 1=1x2 1

参数方程求导法

y = y ( x ) y=y(x) y=y(x)是由 { x = ϕ ( t ) y = ψ ( t ) , ( α < x < β ) \begin{cases}x=\phi(t)\\y=\psi(t)\end{cases},(\alpha{x=ϕ(t)y=ψ(t),(α<x<β)确定的函数,则
ϕ ( t ) \phi(t) ϕ(t) ψ ( t ) \psi(t) ψ(t)都可导,且 ϕ ′ ( t ) ≠ 0 \phi'(t)\ne0 ϕ(t)=0
d y d x = ψ ′ ( t ) ϕ ′ ( t ) \frac{dy}{dx}= \frac{\psi'(t)}{\phi'(t)} dxdy=ϕ(t)ψ(t)
ϕ ( t ) \phi(t) ϕ(t) ψ ( t ) \psi(t) ψ(t)二阶可导,且 ϕ ′ ( t ) ≠ 0 \phi'(t)\ne0 ϕ(t)=0,则
d 2 y d x 2 = d d t ( ψ ′ ( t ) ϕ ′ ( t ) ) ⋅ 1 ϕ ′ ( t ) = ψ ′ ′ ( t ) ϕ ′ ( t ) − ϕ ′ ′ ( t ) ψ ′ ( t ) ϕ ′ 3 ( t ) \frac{d^{2}y}{dx^{2}}=\frac{d}{dt}(\frac{\psi'(t)}{\phi'(t)})\cdot \frac{1}{\phi'(t)}=\frac{\psi''(t)\phi'(t)-\phi''(t)\psi'(t)}{\phi'^{3}(t)} dx2d2y=dtd(ϕ(t)ψ(t))ϕ(t)1=ϕ3(t)ψ′′(t)ϕ(t)ϕ′′(t)ψ(t)

对数求导法

对于幂指函数,默认底数大于零

例7:设 y = ( 1 + sin ⁡ x ) x y=(1+\sin x)^{x} y=(1+sinx)x,则 d y ∣ x = π = dy|_{x=\pi}= dyx=π=()

ln ⁡ y = x ln ⁡ ( 1 + sin ⁡ x ) y ′ y = ln ⁡ ( 1 + cos ⁡ x ) + x cos ⁡ x 1 + sin ⁡ x y ′ = ( 1 + sin ⁡ x ) x [ ln ⁡ ( 1 + sin ⁡ x ) + x cos ⁡ x 1 + sin ⁡ x ] y ′ ∣ x = π = − π d y ∣ x = π = ( − π ) d x \begin{aligned} \ln y&=x\ln(1+\sin x)\\ \frac{y'}{y}&=\ln(1+\cos x)+\frac{x\cos x}{1+\sin x}\\ y'&=(1+\sin x)^{x}[\ln(1+\sin x)+\frac{x\cos x}{1+\sin x}]\\ y'|_{x=\pi}&=-\pi\\ dy|_{x=\pi}&=(-\pi)dx \end{aligned} lnyyyyyx=πdyx=π=xln(1+sinx)=ln(1+cosx)+1+sinxxcosx=(1+sinx)x[ln(1+sinx)+1+sinxxcosx]=π=(π)dx

也可以化成指数形式,即 e x ln ⁡ ( 1 + sin ⁡ x ) e^{x\ln(1+\sin x)} exln(1+sinx),用复合函数求导法

例8:设 y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x3)(x4)(x1)(x2) ,求 y ′ y' y

ln ⁡ y = 1 2 ( ln ⁡ ∣ x − 1 ∣ + ln ⁡ ∣ x − 2 ∣ − ln ⁡ ∣ x − 3 ∣ − ln ⁡ ∣ x − 4 ∣ ) y ′ y = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) y ′ = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) ⋅ ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) \begin{aligned} \ln y&=\frac{1}{2}(\ln|x-1|+\ln|x-2|-\ln|x-3|-\ln|x-4|)\\ \frac{y'}{y}&=\frac{1}{2}(\frac{1}{x-1}+ \frac{1}{x-2}- \frac{1}{x-3}- \frac{1}{x-4})\\ y'&=\frac{1}{2}(\frac{1}{x-1}+ \frac{1}{x-2}- \frac{1}{x-3}- \frac{1}{x-4})\cdot \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \end{aligned} lnyyyy=21(lnx1∣+lnx2∣lnx3∣lnx4∣)=21(x11+x21x31x41)=21(x11+x21x31x41)(x3)(x4)(x1)(x2)

三、高阶导数

定义6(高阶导数): y ( n ) = [ f ( n − 1 ) ( x ) ] ′ y^{(n)}=[f^{(n-1)}(x)]' y(n)=[f(n1)(x)]
f ( n ) ( x 0 ) = lim ⁡ Δ x → 0 f ( n − 1 ) ( x 0 + Δ x ) − f ( n − 1 ) ( x 0 ) Δ x = lim ⁡ x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 \begin{aligned} f^{(n)}(x_{0})&=\lim_{\Delta x\to0 }\frac{f^{(n-1)}(x_{0}+\Delta x)-f^{(n-1)}(x_{0})}{\Delta x}\\ &=\lim_{x\to x_{0}}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_{0})}{x-x_{0}} \end{aligned} f(n)(x0)=Δx0limΔxf(n1)(x0+Δx)f(n1)(x0)=xx0limxx0f(n1)(x)f(n1)(x0)

注:如果函数 f ( x ) f(x) f(x)在点 x x x n n n阶可导,则在点 x x x的某邻域内 f ( x ) f(x) f(x)必定具有一切低于 n n n阶的导数

常用的高阶导数公式
( sin ⁡ x ) ( n ) = sin ⁡ ( x + n ⋅ π 2 ) ( sin ⁡ ( a x + b ) ) ( n ) = sin ⁡ ( a x + b + n ⋅ π 2 ) a n ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n ⋅ π 2 ) ( u ± v ) ( n ) = u ( n ) ± v ( n ) ( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) \begin{aligned} (\sin x)^{(n)}&=\sin(x+n\cdot \frac{\pi}{2})\\ (\sin(ax+b))^{(n)}&=\sin(ax+b+n\cdot \frac{\pi}{2})a^{n}\\ (\cos x)^{(n)}&=\cos(x+n\cdot \frac{\pi}{2})\\ (u\pm v)^{(n)}&=u^{(n)}\pm v^{(n)}\\ (uv)^{(n)}&=\sum\limits^{n}_{k=0}C^{k}_{n}u^{(k)}v^{(n-k)} \end{aligned} (sinx)(n)(sin(ax+b))(n)(cosx)(n)(u±v)(n)(uv)(n)=sin(x+n2π)=sin(ax+b+n2π)an=cos(x+n2π)=u(n)±v(n)=k=0nCnku(k)v(nk)

常考题型与经典例题

导数定义

例9:已知 f ′ ( x 0 ) = − 1 f'(x_{0})=-1 f(x0)=1,则 lim ⁡ x → 0 x f ( x 0 − 2 x ) − f ( x 0 − x ) = ( ) \lim\limits_{x\to0}\frac{x}{f(x_{0}-2x)-f(x_{0}-x)}=() x0limf(x02x)f(x0x)x=()

lim ⁡ x → 0 f ( x 0 − 2 x ) − f ( x 0 − x ) x = lim ⁡ x → 0 f ( x 0 − 2 x ) − f ( x 0 ) − 2 x ( − 2 ) + lim ⁡ x → 0 f ( x 0 − x ) − f ( x 0 ) − x = − 2 f ′ ( x 0 ) + f ′ ( x 0 ) = − 1 \begin{aligned} \lim_{x\to0}\frac{f(x_{0}-2x)-f(x_{0}-x)}{x}&=\lim_{x\to0}\frac{f(x_{0}-2x)-f(x_{0})}{-2x}(-2)+\lim_{x\to0}\frac{f(x_{0}-x)-f(x_{0})}{-x}\\ &=-2f'(x_{0})+f'(x_{0})=-1 \end{aligned} x0limxf(x02x)f(x0x)=x0lim2xf(x02x)f(x0)(2)+x0limxf(x0x)f(x0)=2f(x0)+f(x0)=1

对于选择填空,可以用特殊函数法
f ( x ) = − x f(x)=-x f(x)=x,满足 f ′ ( x 0 ) = − 1 f'(x_{0})=-1 f(x0)=1
lim ⁡ x → 0 x − ( x 0 − 2 x ) + ( x 0 − x ) = lim ⁡ x → 0 x x = 1 \lim_{x\to0}\frac{x}{-(x_{0}-2x)+(x_{0}-x)}=\lim_{x\to0} \frac{x}{x}=1 x0lim(x02x)+(x0x)x=x0limxx=1

例10:设函数 y = f ( x ) y=f(x) y=f(x)由方程 y − x = e x ( 1 − y ) y-x=e^{x(1-y)} yx=ex(1y)确定,则 lim ⁡ x → ∞ n ( f ( 1 n ) − 1 ) \lim\limits_{x\to \infty}n(f(\frac{1}{n})-1) xlimn(f(n1)1)

lim ⁡ n → ∞ n ( f ( 1 n ) − 1 ) = lim ⁡ n → ∞ f ( 1 n ) − 1 1 n 注意到 1 n → 0 ,如果存在 f ( 0 ) = 1 = lim ⁡ n → ∞ f ( 0 + 1 n ) − f ( 0 ) 1 n = f ′ ( 0 ) \begin{align} \lim\limits_{n\to \infty}n(f(\frac{1}{n})-1)&=\lim\limits_{n\to \infty}\frac{f(\frac{1}{n})-1}{\frac{1}{n}}\\ &注意到 \frac{1}{n}\to0,如果存在f(0)=1\\ &=\lim\limits_{n\to \infty}\frac{f(0+\frac{1}{n})-f(0)}{\frac{1}{n}}\\ &=f'(0) \end{align} nlimn(f(n1)1)=nlimn1f(n1)1注意到n10,如果存在f(0)=1=nlimn1f(0+n1)f(0)=f(0)
验证 f ( 0 ) = 1 f(0)=1 f(0)=1
y − 0 = 1 ⇒ y = 1 y-0=1\Rightarrow y=1 y0=1y=1
进而求解 f ′ ( 0 ) f'(0) f(0)
y ′ − 1 = e x ( 1 − y ) ( ( 1 − y ) − x y ′ ) 代入 x = 0 , y = 1 y ′ ( 0 ) − 1 = 0 y ′ ( 0 ) = 1 = f ′ ( 0 ) \begin{align} y'-1&=e^{x(1-y)}((1-y)-xy')\quad代入x=0,y=1\\ y'(0)-1&=0\\ y'(0)&=1=f'(0)\\ \end{align} y1y(0)1y(0)=ex(1y)((1y)xy)代入x=0,y=1=0=1=f(0)
原式即为 f ′ ( 0 ) = 1 f'(0)=1 f(0)=1

例11:证明 f ( x ) = ∣ x ∣ sin ⁡ ∣ x ∣ f(x)=|x|\sin \sqrt{|x|} f(x)=xsinx x = 0 x=0 x=0处可导, f ( x ) = cos ⁡ ∣ x ∣ f(x)=\cos \sqrt{|x|} f(x)=cosx x = 0 x=0 x=0处不可导

lim ⁡ x → 0 ∣ x ∣ sin ⁡ ∣ x ∣ − 0 x = lim ⁡ x → 0 ∣ x ∣ ∣ x ∣ x = lim ⁡ x → 0 ± ∣ x ∣ = 0 lim ⁡ x → 0 cos ⁡ ∣ x ∣ − 1 x = lim ⁡ x → 0 − 1 2 ( ∣ x ∣ ) 2 x = − 1 2 lim ⁡ x → 0 ∣ x ∣ x = { − 1 2 , x → 0 + 1 2 , x → 0 − \begin{aligned} \lim_{x\to0}\frac{|x|\sin \sqrt{|x|}-0}{x}&=\lim_{x\to0}\frac{|x|\sqrt{|x|}}{x}\\ &=\lim_{x\to0}\pm \sqrt{|x|}\\ &=0\\ \lim_{x\to0}\frac{\cos \sqrt{|x|}-1}{x}&=\lim_{x\to0}\frac{- \frac{1}{2}(\sqrt{|x|})^{2}}{x}\\ &=- \frac{1}{2}\lim_{x\to0} \frac{|x|}{x}\\ &=\begin{cases} -\frac{1}{2},x\to0^{+} \\ \frac{1}{2},x\to0^{-} \end{cases} \end{aligned} x0limxxsinx 0x0limxcosx 1=x0limxxx =x0lim±x =0=x0limx21(x )2=21x0limxx={21,x0+21,x0

例12:设 f ( x ) f(x) f(x) x = a x=a x=a的某个邻域内有定义,则 lim ⁡ h → 0 f ( a ) − f ( a − h ) h \lim\limits_{h\to0}\frac{f(a)-f(a-h)}{h} h0limhf(a)f(ah)存在是 f ( x ) f(x) f(x) x = a x=a x=a处可导的一个充分条件; lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h} h0lim2hf(a+h)f(ah)存在不是 f ( x ) f(x) f(x) x = a x=a x=a处可导的一个充分条件

lim ⁡ h → 0 f ( a ) − f ( a − h ) h = lim ⁡ h → 0 f ( a − h ) − f ( a ) − h = f ′ ( a ) \lim\limits_{h\to0}\frac{f(a)-f(a-h)}{h}=\lim\limits_{h\to0}\frac{f(a-h)-f(a)}{-h}=f'(a) h0limhf(a)f(ah)=h0limhf(ah)f(a)=f(a)
此处 − h -h h和定义分母中的 h h h是一样的,由于 lim ⁡ h → 0 \lim\limits_{h\to0} h0lim,包含正负两侧
因此 lim ⁡ h → 0 f ( a ) − f ( a − h ) h \lim\limits_{h\to0}\frac{f(a)-f(a-h)}{h} h0limhf(a)f(ah)存在是 f ( x ) f(x) f(x) x = a x=a x=a处可导的一个充分条件

lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h = lim ⁡ h → 0 1 2 [ f ( a + h ) − f ( a ) h − f ( a − h ) − f ( a ) h ] \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h}=\lim\limits_{h\to0} \frac{1}{2}[\frac{f(a+h)-f(a)}{h}- \frac{f(a-h)-f(a)}{h}] h0lim2hf(a+h)f(ah)=h0lim21[hf(a+h)f(a)hf(ah)f(a)]
题中只说明了 lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h} h0lim2hf(a+h)f(ah)存在,无法说明 lim ⁡ h → 0 f ( a + h ) − f ( a ) h \lim\limits_{h\to0}\frac{f(a+h)-f(a)}{h} h0limhf(a+h)f(a) lim ⁡ h → 0 f ( a − h ) − f ( a ) h \lim\limits_{h\to0}\frac{f(a-h)-f(a)}{h} h0limhf(ah)f(a)中任何一个存在
因此 lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h} h0lim2hf(a+h)f(ah)存在不是 f ( x ) f(x) f(x) x = a x=a x=a处可导的一个充分条件
例如 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x,对 a = 0 a=0 a=0
lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h = lim ⁡ h → 0 ∣ h ∣ − ∣ − h ∣ 2 h = 0 \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h}=\lim\limits_{h\to0}\frac{|h|-|-h|}{2h}=0 h0lim2hf(a+h)f(ah)=h0lim2hhh=0

复合函数、隐函数、参数方程求导

高阶导数

例13:设函数 y = 1 2 x + 3 y=\frac{1}{2x+3} y=2x+31,则 y ( n ) ( 0 ) = ( ) y^{(n)}(0)=() y(n)(0)=()

y = ( 2 x + 3 ) − 1 y ′ = ( − 1 ) ( 2 x + 3 ) − 2 ⋅ 2 y ′ ′ = ( − 1 ) ( − 2 ) ( 2 x + 3 ) − 3 ⋅ 2 2 y ( n ) = ( − 1 ) n n ! ( 2 x + 3 ) − ( n + 1 ) ⋅ 2 n y ( n ) ( 0 ) = ( − 1 ) n n ! 2 n 3 n + 1 \begin{aligned} y&=(2x+3)^{-1}\\ y'&=(-1)(2x+3)^{-2}\cdot 2\\ y''&=(-1)(-2)(2x+3)^{-3}\cdot 2^{2}\\ y^{(n)}&=(-1)^{n}n!(2x+3)^{-(n+1)}\cdot 2^{n}\\ y^{(n)}(0)&=\frac{(-1)^{n}n!2^{n}}{3^{n+1}} \end{aligned} yyy′′y(n)y(n)(0)=(2x+3)1=(1)(2x+3)22=(1)(2)(2x+3)322=(1)nn!(2x+3)(n+1)2n=3n+1(1)nn!2n

例14:函数 f ( x ) = x 2 2 x f(x)=x^{2}2^{x} f(x)=x22x x = 0 x=0 x=0处的 n n n阶导数 f ( n ) ( 0 ) = ( ) f^{(n)}(0)=() f(n)(0)=()

f ( x ) = x 2 2 x f(x)=x^{2}2^{x} f(x)=x22x,令 x 2 = u , 2 x = v x^{2}=u,2^{x}=v x2=u,2x=v
( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) u = x 2 , u ′ = 2 x , u ′ ′ = 2 , u ′ ′ ′ = 0 v ′ = 2 x ln ⁡ 2 , v ′ ′ = 2 x ( ln ⁡ 2 ) 2 , v ( n ) = 2 x ( ln ⁡ 2 ) ( n ) \begin{gathered} (uv)^{(n)}=\sum\limits^{n}_{k=0}C^{k}_{n}u^{(k)}v^{(n-k)}\\ u=x^{2},u'=2x,u''=2,u'''=0\\ v'=2^{x}\ln2,v''=2^{x}(\ln2)^{2},v^{(n)}=2^{x}(\ln 2)^{(n)} \end{gathered} (uv)(n)=k=0nCnku(k)v(nk)u=x2,u=2x,u′′=2,u′′′=0v=2xln2,v′′=2x(ln2)2,v(n)=2x(ln2)(n)
代入 f ( n ) ( 0 ) f^{(n)}(0) f(n)(0),注意 x = 0 x=0 x=0
f ( n ) ( 0 ) = C n 2 u ′ ′ ( 0 ) v ( n − 2 ) ( 0 ) = n ( n − 1 ) ( ln ⁡ 2 ) n − 2 f^{(n)}(0)=C^{2}_{n}u''(0)v^{(n-2)}(0)=n(n-1)(\ln2)^{n-2} f(n)(0)=Cn2u′′(0)v(n2)(0)=n(n1)(ln2)n2

导数应用

例15:对数螺线 ρ = e θ \rho=e^{\theta} ρ=eθ在点 ( ρ , θ ) = ( e π 2 , π 2 ) (\rho,\theta)=(e^{\frac{\pi}{2}},\frac{\pi}{2}) (ρ,θ)=(e2π,2π)处的切线的直角坐标方程为()

转化为参数方程
ρ = e θ ⇒ { x = e θ cos ⁡ θ y = e θ sin ⁡ θ \rho=e^{\theta}\Rightarrow \begin{cases} x=e^{\theta}\cos \theta \\ y=e^{\theta}\sin \theta \end{cases} ρ=eθ{x=eθcosθy=eθsinθ
求导
d y d x = e θ sin ⁡ θ + e θ cos ⁡ θ e θ cos ⁡ θ − e θ sin ⁡ θ d y d x ∣ θ = π 2 = − 1 \frac{dy}{dx}=\frac{e^{\theta}\sin \theta+e^{\theta}\cos \theta}{e^{\theta}\cos \theta-e^{\theta}\sin \theta}\quad \frac{dy}{dx}\Big|_{\theta=\frac{\pi}{2}}=-1 dxdy=eθcosθeθsinθeθsinθ+eθcosθdxdy θ=2π=1
所以方程为 x + y = e π 2 x+y=e^{\frac{\pi}{2}} x+y=e2π

相关变化率

例16:已知动点 P P P在曲线 y = x 3 y=x^{3} y=x3上运动,记坐标原点与点 P P P间的距离为 l l l。若点 P P P的横坐标对时间的变化率为常数 v 0 v_{0} v0,则当点 P P P运动到点 ( 1 , 1 ) (1,1) (1,1)时, l l l对时间的变化率是()

由题意知
d x d t = v 0 , l = x 2 + y 2 = x 2 + x 6 \frac{dx}{dt}=v_{0},l=\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+x^{6}} dtdx=v0,l=x2+y2 =x2+x6
求导
d l d t = 2 x + 6 x 5 2 x 2 + x 6 ⋅ d x d t = 2 x + 6 x 5 2 x 2 + x 6 ⋅ v 0 ∣ x = 1 = 2 2 v 0 \frac{dl}{dt}=\frac{2x+6x^{5}}{2\sqrt{x^{2}+x^{6}}}\cdot \frac{dx}{dt}=\frac{2x+6x^{5}}{2\sqrt{x^{2}+x^{6}}}\cdot v_{0}\Big|_{x=1}=2\sqrt{2}v_{0} dtdl=2x2+x6 2x+6x5dtdx=2x2+x6 2x+6x5v0 x=1=22 v0

活动地址:CSDN21天学习挑战赛

你可能感兴趣的:(高等数学,学习,高等数学)