定义1(导数)
f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_{0})=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f′(x0)=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
令 x 0 + Δ x = x x_{0}+\Delta x=x x0+Δx=x
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_{0})=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} f′(x0)=x→x0limx−x0f(x)−f(x0)
令 Δ x = h \Delta x=h Δx=h
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_{0})=\lim_{h\to 0}\frac{f(x_{0}+h)-f(x_{0})}{h} f′(x0)=h→0limhf(x0+h)−f(x0)
定义2(左导数):
f − ′ ( x 0 ) = lim Δ x → 0 − Δ y Δ x = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_{-}(x_{0})=\lim_{\Delta x\to 0^{-}}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0^{-}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f−′(x0)=Δx→0−limΔxΔy=Δx→0−limΔxf(x0+Δx)−f(x0)
定义3(右导数):
f + ′ ( x 0 ) = lim Δ x → 0 + Δ y Δ x = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_{+}(x_{0})=\lim_{\Delta x\to 0^{+}}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0^{+}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f+′(x0)=Δx→0+limΔxΔy=Δx→0+limΔxf(x0+Δx)−f(x0)
导数与 f ( x 0 ) f(x_{0}) f(x0)以及其邻域的函数值有关,左导数与 f ( x 0 ) f(x_{0}) f(x0)以及其左邻域的函数值有关,右导数与 f ( x 0 ) f(x_{0}) f(x0)以及其右邻域的函数值有关
定理1:可导 ⇔ \Leftrightarrow ⇔左右导数都存在且相等
定义4(区间上可导及导函数)
例1:设函数 f ( x ) f(x) f(x)对任意 x x x均满足等式 f ( 1 + x ) = a f ( x ) f(1+x)=af(x) f(1+x)=af(x),且有 f ′ ( 0 ) = b f'(0)=b f′(0)=b,其中 a , b a,b a,b为非零常数,则 f ′ ( 1 ) = f'(1)= f′(1)=()
f ′ ( 1 ) = lim Δ x → 0 f ( 1 + Δ x ) − f ( 1 ) Δ x 为了使用 f ( 1 + x ) = a f ( x ) ,用另一种也行 = lim Δ x → 0 a f ( Δ x ) − f ( 1 ) Δ x = lim Δ x → 0 a f ( Δ x ) − a f ( 0 ) Δ x = a lim Δ x → 0 f ( Δ x ) − f ( 0 ) Δ x = a f ′ ( 0 ) = a b \begin{aligned} f'(1)&=\lim_{\Delta x\to0}\frac{f(1+\Delta x)-f(1)}{\Delta x}\\ &为了使用f(1+x)=af(x),用另一种也行\\ &=\lim_{\Delta x\to0}\frac{af(\Delta x)-f(1)}{\Delta x}\\ &=\lim_{\Delta x\to0}\frac{af(\Delta x)-af(0)}{\Delta x}\\ &=a\lim_{\Delta x\to0}\frac{f(\Delta x)-f(0)}{\Delta x}\\ &=af'(0)=ab \end{aligned} f′(1)=Δx→0limΔxf(1+Δx)−f(1)为了使用f(1+x)=af(x),用另一种也行=Δx→0limΔxaf(Δx)−f(1)=Δx→0limΔxaf(Δx)−af(0)=aΔx→0limΔxf(Δx)−f(0)=af′(0)=ab
定义5(微分):如果 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_{0}+\Delta x)-f(x_{0}) Δy=f(x0+Δx)−f(x0)可以表示为
Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) \Delta y=A \Delta x+o(\Delta x)\quad(\Delta x\to0) Δy=AΔx+o(Δx)(Δx→0)
则称函数 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处可微,称 A Δ x A \Delta x AΔx为微分,记为
d y = A Δ x dy=A \Delta x dy=AΔx
定理2:函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处可微的充分必要条件是 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处可导,且有
d y = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy=f'(x_{0})\Delta x=f'(x_{0})dx dy=f′(x0)Δx=f′(x0)dx
导数的几何意义:导数 f ′ ( x 0 ) f'(x_{0}) f′(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))处切线的斜率
切线方程
y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_{0})=f'(x_{0})(x-x_{0}) y−f(x0)=f′(x0)(x−x0)
法线方程
y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_{0})=-\frac{1}{f'(x_{0})}(x-x_{0}) y−f(x0)=−f′(x0)1(x−x0)
微分的几何意义:微分 d y = f ′ ( x 0 ) d x dy=f'(x_{0})dx dy=f′(x0)dx在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)的切线上的增量
![[附件/Pasted image 20220812203603.png|300]]
Δ y \Delta y Δy表示曲线上的改变量, d y dy dy表示切线上的改变量
用微分代替函数改变量就是在微小的局部用均匀变化代替非均匀变化
连续不一定可导,可导一定连续;连续不一定可微,可微一定连续。可导可微等价
例2:可导 ⇒ \Rightarrow ⇒可微
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⇒ f ( x 0 + Δ x ) − f ( x 0 ) Δ x = f ′ ( x 0 ) + α ⇒ f ( x 0 + Δ x ) − f ( x 0 ) = f ′ ( x 0 ) Δ x + α Δ x = f ′ ( x 0 ) Δ x + o ( Δ x ) \begin{aligned} f'(x_{0})&=\lim_{\Delta x\to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}\\ &\Rightarrow\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}=f'(x_{0})+\alpha\nonumber\\ &\Rightarrow f(x_{0}+\Delta x)-f(x_{0}) =f'(x_{0})\Delta x+\alpha \Delta x=f'(x_{0})\Delta x+o(\Delta x) \end{aligned} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)⇒Δxf(x0+Δx)−f(x0)=f′(x0)+α⇒f(x0+Δx)−f(x0)=f′(x0)Δx+αΔx=f′(x0)Δx+o(Δx)
证毕
f ( x ) 在 x 0 ( 的某邻域 ) 可导 { 能推出 f ( x ) 在 x 0 点连续 推不出 f ′ ( x ) 在 x 0 点连续 推不出 lim x → x 0 f ′ ( x ) 存在 f(x)在x_{0}(的某邻域)可导 \begin{cases} 能推出f(x)在x_{0}点连续 \\ 推不出f'(x)在x_{0}点连续 \\ 推不出\lim\limits_{x\to x_{0}}f'(x)存在 \end{cases} f(x)在x0(的某邻域)可导⎩ ⎨ ⎧能推出f(x)在x0点连续推不出f′(x)在x0点连续推不出x→x0limf′(x)存在
例3: f ( x ) = { x 2 sin 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases}x^{2}\sin \frac{1}{x},x\ne0\\0,x=0\end{cases} f(x)={x2sinx1,x=00,x=0
证明: f ( x ) f(x) f(x)处处可导, lim x → 0 f ′ ( x ) \lim\limits_{x\to0}f'(x) x→0limf′(x)不存在
当 x ≠ 0 x\ne0 x=0
f ′ ( 0 ) = 2 x sin 1 x − cos 1 x f'(0)=2x\sin \frac{1}{x}-\cos \frac{1}{x} f′(0)=2xsinx1−cosx1
当 x = 0 x=0 x=0
f ′ ( 0 ) = lim x → 0 x 2 sin 1 x − 0 x = 0 f'(0)=\lim_{x\to0}\frac{x^{2}\sin \frac{1}{x}-0}{x}=0 f′(0)=x→0limxx2sinx1−0=0
显然 lim x → 0 f ′ ( x ) \lim\limits_{x\to0}f'(x) x→0limf′(x)不存在
例4:设 f ( x ) f(x) f(x)二阶可导, f ( 0 ) = 0. , f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 2 f(0)=0.,f'(0)=1,f''(0)=2 f(0)=0.,f′(0)=1,f′′(0)=2,求极限 lim x → 0 f ( x ) − x x 2 \lim\limits_{x\to0}\frac{f(x)-x}{x^{2}} x→0limx2f(x)−x
错误解法的解释
lim x → 0 f ( x ) − x x 2 = lim x → 0 f ′ ( x ) − 1 2 x lim x → 0 f ′ ′ ( x ) 未必存在 = lim x → 0 f ′ ′ ( x ) 2 f ′ ′ ( x ) 未必连续 = f ′ ′ ( 0 ) 2 = 1 \begin{aligned} \lim\limits_{x\to0}\frac{f(x)-x}{x^{2}}&=\lim\limits_{x\to0}\frac{f'(x)-1}{2x}\\ &\lim\limits_{x\to0}f''(x)未必存在\\ &=\lim\limits_{x\to0}\frac{f''(x)}{2}\\ &f''(x)未必连续 &=\frac{f''(0)}{2}\\ &=1 \end{aligned} x→0limx2f(x)−x=x→0lim2xf′(x)−1x→0limf′′(x)未必存在=x→0lim2f′′(x)f′′(x)未必连续=1=2f′′(0)
正确解法
![[数学基础/高等数学/基础进阶/1.函数、极限、连续/极限#^1]]
使用原则
f ( x ) , n f(x),n f(x),n阶可导,洛必达法则只能用到出现 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n−1)(x)
f ( x ) , n f(x),n f(x),n阶连续可导,洛必达法则能用到出现 f ( n ) ( x ) f^{(n)}(x) f(n)(x)
例5:设 f ( x ) = { x λ cos 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases}x^{\lambda}\cos \frac{1}{x},x\ne0\\0,x=0\end{cases} f(x)={xλcosx1,x=00,x=0,其导函数在 x = 0 x=0 x=0处连续,则 λ \lambda λ取值范围是()
函数在 x = x 0 x=x_{0} x=x0处连续,即 lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}}f(x)=f(x_{0}) x→x0limf(x)=f(x0)
当 x = 0 x=0 x=0
f ′ ( 0 ) = lim x → 0 x λ cos 1 x − 0 x = lim x → 0 x λ − 1 cos 1 x f'(0)=\lim_{x\to0}\frac{x^{\lambda}\cos \frac{1}{x}-0}{x}=\lim_{x\to0}x^{\lambda-1}\cos \frac{1}{x} f′(0)=x→0limxxλcosx1−0=x→0limxλ−1cosx1
若要导函数在 x = 0 x=0 x=0处连续,首先要 f ′ ( 0 ) f'(0) f′(0)存在,因此 λ − 1 > 0 \lambda-1>0 λ−1>0,即 λ > 1 \lambda>1 λ>1,此时 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0
当 x ≠ 0 x\ne0 x=0
f ′ ( x ) = λ x λ − 1 cos 1 x + x λ − 2 sin 1 x f'(x)=\lambda x^{\lambda-1}\cos \frac{1}{x}+x^{\lambda-2}\sin \frac{1}{x} f′(x)=λxλ−1cosx1+xλ−2sinx1
又 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0,有 λ x λ − 1 cos 1 x + x λ − 2 sin 1 x = 0 \lambda x^{\lambda-1}\cos \frac{1}{x}+x^{\lambda-2}\sin \frac{1}{x}=0 λxλ−1cosx1+xλ−2sinx1=0,得 λ > 2 \lambda>2 λ>2
综上 λ > 2 \lambda>2 λ>2
( C ) ′ = 0 ( x α ) ′ = α x α − 1 ( a x ) ′ = a x ln a ( e x ) ′ = e x ( log a x ) ′ = 1 x ln a ( ln ∣ x ∣ ) ′ = 1 x ( sin x ) ′ = cos x ( cos x ) ′ = − sin x ( tan x ) ′ = sec 2 x ( cot x ) ′ = − csc 2 x ( sec x ) ′ = sec x tan x ( csc x ) ′ = − csc x cot x ( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 \begin{aligned} (C)'&=0\\ (x^{\alpha})'&=\alpha x^{\alpha-1}\\ (a^{x})'&=a^{x}\ln a\\ (e^{x})'&=e^{x}\\ (\log_{a}x)'&=\frac{1}{x\ln a}\\ (\ln|x|)'&=\frac{1}{x}\\ (\sin x)'&=\cos x\\ (\cos x)'&=-\sin x\\ (\tan x)'&=\sec^{2}x\\ (\cot x)'&=-\csc^{2}x\\ (\sec x)'&=\sec x\tan x\\ (\csc x)'&=-\csc x\cot x\\ (\arcsin x)'&=\frac{1}{\sqrt{1-x^{2}}}\\ (\arccos x)'&=- \frac{1}{\sqrt{1-x^{2}}}\\ (\arctan x)'&= \frac{1}{1+x^{2}}\\ (\text{arccot }x)'&= - \frac{1}{1+x^{2}} \end{aligned} (C)′(xα)′(ax)′(ex)′(logax)′(ln∣x∣)′(sinx)′(cosx)′(tanx)′(cotx)′(secx)′(cscx)′(arcsinx)′(arccosx)′(arctanx)′(arccot x)′=0=αxα−1=axlna=ex=xlna1=x1=cosx=−sinx=sec2x=−csc2x=secxtanx=−cscxcotx=1−x21=−1−x21=1+x21=−1+x21
设 u = ϕ ( x ) , y = f ( u ) u=\phi(x),y=f(u) u=ϕ(x),y=f(u)可导,则 y = f [ ϕ ( x ) ] y=f[\phi(x)] y=f[ϕ(x)]
d y d x = d y d u ⋅ d u d x = f ′ ( u ) ϕ ′ ( x ) \frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}=f'(u)\phi'(x) dxdy=dudy⋅dxdu=f′(u)ϕ′(x)
设函数 f ( x ) f(x) f(x)可导
F ( x , y ) = 0 , d y d x = − F x F y F(x,y)=0,\quad\frac{dy}{dx}=-\frac{F_{x}}{F_{y}} F(x,y)=0,dxdy=−FyFx
若 y = f ( x ) y=f(x) y=f(x)可导,且 f ′ ( x ) ≠ 0 f'(x)\ne0 f′(x)=0,则其反函数 x = ϕ ( y ) x=\phi(y) x=ϕ(y)也可导,且
ϕ ′ ( x ) = 1 f ′ ( x ) , d x d y = 1 d y d x \phi'(x)= \frac{1}{f'(x)},\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}} ϕ′(x)=f′(x)1,dydx=dxdy1
例6:证明: ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^{2}}} (arcsinx)′=1−x21
d y d x = 1 d x d y = 1 cos y = 1 1 − sin 2 y = 1 1 − x 2 \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin^{2}y}}=\frac{1}{\sqrt{1-x^{2}}} dxdy=dydx1=cosy1=1−sin2y1=1−x21
设 y = y ( x ) y=y(x) y=y(x)是由 { x = ϕ ( t ) y = ψ ( t ) , ( α < x < β ) \begin{cases}x=\phi(t)\\y=\psi(t)\end{cases},(\alpha
若 ϕ ( t ) \phi(t) ϕ(t)和 ψ ( t ) \psi(t) ψ(t)都可导,且 ϕ ′ ( t ) ≠ 0 \phi'(t)\ne0 ϕ′(t)=0
d y d x = ψ ′ ( t ) ϕ ′ ( t ) \frac{dy}{dx}= \frac{\psi'(t)}{\phi'(t)} dxdy=ϕ′(t)ψ′(t)
若 ϕ ( t ) \phi(t) ϕ(t)和 ψ ( t ) \psi(t) ψ(t)二阶可导,且 ϕ ′ ( t ) ≠ 0 \phi'(t)\ne0 ϕ′(t)=0,则
d 2 y d x 2 = d d t ( ψ ′ ( t ) ϕ ′ ( t ) ) ⋅ 1 ϕ ′ ( t ) = ψ ′ ′ ( t ) ϕ ′ ( t ) − ϕ ′ ′ ( t ) ψ ′ ( t ) ϕ ′ 3 ( t ) \frac{d^{2}y}{dx^{2}}=\frac{d}{dt}(\frac{\psi'(t)}{\phi'(t)})\cdot \frac{1}{\phi'(t)}=\frac{\psi''(t)\phi'(t)-\phi''(t)\psi'(t)}{\phi'^{3}(t)} dx2d2y=dtd(ϕ′(t)ψ′(t))⋅ϕ′(t)1=ϕ′3(t)ψ′′(t)ϕ′(t)−ϕ′′(t)ψ′(t)
对于幂指函数,默认底数大于零
例7:设 y = ( 1 + sin x ) x y=(1+\sin x)^{x} y=(1+sinx)x,则 d y ∣ x = π = dy|_{x=\pi}= dy∣x=π=()
ln y = x ln ( 1 + sin x ) y ′ y = ln ( 1 + cos x ) + x cos x 1 + sin x y ′ = ( 1 + sin x ) x [ ln ( 1 + sin x ) + x cos x 1 + sin x ] y ′ ∣ x = π = − π d y ∣ x = π = ( − π ) d x \begin{aligned} \ln y&=x\ln(1+\sin x)\\ \frac{y'}{y}&=\ln(1+\cos x)+\frac{x\cos x}{1+\sin x}\\ y'&=(1+\sin x)^{x}[\ln(1+\sin x)+\frac{x\cos x}{1+\sin x}]\\ y'|_{x=\pi}&=-\pi\\ dy|_{x=\pi}&=(-\pi)dx \end{aligned} lnyyy′y′y′∣x=πdy∣x=π=xln(1+sinx)=ln(1+cosx)+1+sinxxcosx=(1+sinx)x[ln(1+sinx)+1+sinxxcosx]=−π=(−π)dx
也可以化成指数形式,即 e x ln ( 1 + sin x ) e^{x\ln(1+\sin x)} exln(1+sinx),用复合函数求导法
例8:设 y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x−3)(x−4)(x−1)(x−2),求 y ′ y' y′
ln y = 1 2 ( ln ∣ x − 1 ∣ + ln ∣ x − 2 ∣ − ln ∣ x − 3 ∣ − ln ∣ x − 4 ∣ ) y ′ y = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) y ′ = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) ⋅ ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) \begin{aligned} \ln y&=\frac{1}{2}(\ln|x-1|+\ln|x-2|-\ln|x-3|-\ln|x-4|)\\ \frac{y'}{y}&=\frac{1}{2}(\frac{1}{x-1}+ \frac{1}{x-2}- \frac{1}{x-3}- \frac{1}{x-4})\\ y'&=\frac{1}{2}(\frac{1}{x-1}+ \frac{1}{x-2}- \frac{1}{x-3}- \frac{1}{x-4})\cdot \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \end{aligned} lnyyy′y′=21(ln∣x−1∣+ln∣x−2∣−ln∣x−3∣−ln∣x−4∣)=21(x−11+x−21−x−31−x−41)=21(x−11+x−21−x−31−x−41)⋅(x−3)(x−4)(x−1)(x−2)
定义6(高阶导数): y ( n ) = [ f ( n − 1 ) ( x ) ] ′ y^{(n)}=[f^{(n-1)}(x)]' y(n)=[f(n−1)(x)]′
f ( n ) ( x 0 ) = lim Δ x → 0 f ( n − 1 ) ( x 0 + Δ x ) − f ( n − 1 ) ( x 0 ) Δ x = lim x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 \begin{aligned} f^{(n)}(x_{0})&=\lim_{\Delta x\to0 }\frac{f^{(n-1)}(x_{0}+\Delta x)-f^{(n-1)}(x_{0})}{\Delta x}\\ &=\lim_{x\to x_{0}}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_{0})}{x-x_{0}} \end{aligned} f(n)(x0)=Δx→0limΔxf(n−1)(x0+Δx)−f(n−1)(x0)=x→x0limx−x0f(n−1)(x)−f(n−1)(x0)
注:如果函数 f ( x ) f(x) f(x)在点 x x x处 n n n阶可导,则在点 x x x的某邻域内 f ( x ) f(x) f(x)必定具有一切低于 n n n阶的导数
常用的高阶导数公式
( sin x ) ( n ) = sin ( x + n ⋅ π 2 ) ( sin ( a x + b ) ) ( n ) = sin ( a x + b + n ⋅ π 2 ) a n ( cos x ) ( n ) = cos ( x + n ⋅ π 2 ) ( u ± v ) ( n ) = u ( n ) ± v ( n ) ( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) \begin{aligned} (\sin x)^{(n)}&=\sin(x+n\cdot \frac{\pi}{2})\\ (\sin(ax+b))^{(n)}&=\sin(ax+b+n\cdot \frac{\pi}{2})a^{n}\\ (\cos x)^{(n)}&=\cos(x+n\cdot \frac{\pi}{2})\\ (u\pm v)^{(n)}&=u^{(n)}\pm v^{(n)}\\ (uv)^{(n)}&=\sum\limits^{n}_{k=0}C^{k}_{n}u^{(k)}v^{(n-k)} \end{aligned} (sinx)(n)(sin(ax+b))(n)(cosx)(n)(u±v)(n)(uv)(n)=sin(x+n⋅2π)=sin(ax+b+n⋅2π)an=cos(x+n⋅2π)=u(n)±v(n)=k=0∑nCnku(k)v(n−k)
例9:已知 f ′ ( x 0 ) = − 1 f'(x_{0})=-1 f′(x0)=−1,则 lim x → 0 x f ( x 0 − 2 x ) − f ( x 0 − x ) = ( ) \lim\limits_{x\to0}\frac{x}{f(x_{0}-2x)-f(x_{0}-x)}=() x→0limf(x0−2x)−f(x0−x)x=()
lim x → 0 f ( x 0 − 2 x ) − f ( x 0 − x ) x = lim x → 0 f ( x 0 − 2 x ) − f ( x 0 ) − 2 x ( − 2 ) + lim x → 0 f ( x 0 − x ) − f ( x 0 ) − x = − 2 f ′ ( x 0 ) + f ′ ( x 0 ) = − 1 \begin{aligned} \lim_{x\to0}\frac{f(x_{0}-2x)-f(x_{0}-x)}{x}&=\lim_{x\to0}\frac{f(x_{0}-2x)-f(x_{0})}{-2x}(-2)+\lim_{x\to0}\frac{f(x_{0}-x)-f(x_{0})}{-x}\\ &=-2f'(x_{0})+f'(x_{0})=-1 \end{aligned} x→0limxf(x0−2x)−f(x0−x)=x→0lim−2xf(x0−2x)−f(x0)(−2)+x→0lim−xf(x0−x)−f(x0)=−2f′(x0)+f′(x0)=−1
对于选择填空,可以用特殊函数法
设 f ( x ) = − x f(x)=-x f(x)=−x,满足 f ′ ( x 0 ) = − 1 f'(x_{0})=-1 f′(x0)=−1
lim x → 0 x − ( x 0 − 2 x ) + ( x 0 − x ) = lim x → 0 x x = 1 \lim_{x\to0}\frac{x}{-(x_{0}-2x)+(x_{0}-x)}=\lim_{x\to0} \frac{x}{x}=1 x→0lim−(x0−2x)+(x0−x)x=x→0limxx=1
例10:设函数 y = f ( x ) y=f(x) y=f(x)由方程 y − x = e x ( 1 − y ) y-x=e^{x(1-y)} y−x=ex(1−y)确定,则 lim x → ∞ n ( f ( 1 n ) − 1 ) \lim\limits_{x\to \infty}n(f(\frac{1}{n})-1) x→∞limn(f(n1)−1)
lim n → ∞ n ( f ( 1 n ) − 1 ) = lim n → ∞ f ( 1 n ) − 1 1 n 注意到 1 n → 0 ,如果存在 f ( 0 ) = 1 = lim n → ∞ f ( 0 + 1 n ) − f ( 0 ) 1 n = f ′ ( 0 ) \begin{align} \lim\limits_{n\to \infty}n(f(\frac{1}{n})-1)&=\lim\limits_{n\to \infty}\frac{f(\frac{1}{n})-1}{\frac{1}{n}}\\ &注意到 \frac{1}{n}\to0,如果存在f(0)=1\\ &=\lim\limits_{n\to \infty}\frac{f(0+\frac{1}{n})-f(0)}{\frac{1}{n}}\\ &=f'(0) \end{align} n→∞limn(f(n1)−1)=n→∞limn1f(n1)−1注意到n1→0,如果存在f(0)=1=n→∞limn1f(0+n1)−f(0)=f′(0)
验证 f ( 0 ) = 1 f(0)=1 f(0)=1
y − 0 = 1 ⇒ y = 1 y-0=1\Rightarrow y=1 y−0=1⇒y=1
进而求解 f ′ ( 0 ) f'(0) f′(0)
y ′ − 1 = e x ( 1 − y ) ( ( 1 − y ) − x y ′ ) 代入 x = 0 , y = 1 y ′ ( 0 ) − 1 = 0 y ′ ( 0 ) = 1 = f ′ ( 0 ) \begin{align} y'-1&=e^{x(1-y)}((1-y)-xy')\quad代入x=0,y=1\\ y'(0)-1&=0\\ y'(0)&=1=f'(0)\\ \end{align} y′−1y′(0)−1y′(0)=ex(1−y)((1−y)−xy′)代入x=0,y=1=0=1=f′(0)
原式即为 f ′ ( 0 ) = 1 f'(0)=1 f′(0)=1
例11:证明 f ( x ) = ∣ x ∣ sin ∣ x ∣ f(x)=|x|\sin \sqrt{|x|} f(x)=∣x∣sin∣x∣在 x = 0 x=0 x=0处可导, f ( x ) = cos ∣ x ∣ f(x)=\cos \sqrt{|x|} f(x)=cos∣x∣在 x = 0 x=0 x=0处不可导
lim x → 0 ∣ x ∣ sin ∣ x ∣ − 0 x = lim x → 0 ∣ x ∣ ∣ x ∣ x = lim x → 0 ± ∣ x ∣ = 0 lim x → 0 cos ∣ x ∣ − 1 x = lim x → 0 − 1 2 ( ∣ x ∣ ) 2 x = − 1 2 lim x → 0 ∣ x ∣ x = { − 1 2 , x → 0 + 1 2 , x → 0 − \begin{aligned} \lim_{x\to0}\frac{|x|\sin \sqrt{|x|}-0}{x}&=\lim_{x\to0}\frac{|x|\sqrt{|x|}}{x}\\ &=\lim_{x\to0}\pm \sqrt{|x|}\\ &=0\\ \lim_{x\to0}\frac{\cos \sqrt{|x|}-1}{x}&=\lim_{x\to0}\frac{- \frac{1}{2}(\sqrt{|x|})^{2}}{x}\\ &=- \frac{1}{2}\lim_{x\to0} \frac{|x|}{x}\\ &=\begin{cases} -\frac{1}{2},x\to0^{+} \\ \frac{1}{2},x\to0^{-} \end{cases} \end{aligned} x→0limx∣x∣sin∣x∣−0x→0limxcos∣x∣−1=x→0limx∣x∣∣x∣=x→0lim±∣x∣=0=x→0limx−21(∣x∣)2=−21x→0limx∣x∣={−21,x→0+21,x→0−
例12:设 f ( x ) f(x) f(x)在 x = a x=a x=a的某个邻域内有定义,则 lim h → 0 f ( a ) − f ( a − h ) h \lim\limits_{h\to0}\frac{f(a)-f(a-h)}{h} h→0limhf(a)−f(a−h)存在是 f ( x ) f(x) f(x)在 x = a x=a x=a处可导的一个充分条件; lim h → 0 f ( a + h ) − f ( a − h ) 2 h \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h} h→0lim2hf(a+h)−f(a−h)存在不是 f ( x ) f(x) f(x)在 x = a x=a x=a处可导的一个充分条件
lim h → 0 f ( a ) − f ( a − h ) h = lim h → 0 f ( a − h ) − f ( a ) − h = f ′ ( a ) \lim\limits_{h\to0}\frac{f(a)-f(a-h)}{h}=\lim\limits_{h\to0}\frac{f(a-h)-f(a)}{-h}=f'(a) h→0limhf(a)−f(a−h)=h→0lim−hf(a−h)−f(a)=f′(a)
此处 − h -h −h和定义分母中的 h h h是一样的,由于 lim h → 0 \lim\limits_{h\to0} h→0lim,包含正负两侧
因此 lim h → 0 f ( a ) − f ( a − h ) h \lim\limits_{h\to0}\frac{f(a)-f(a-h)}{h} h→0limhf(a)−f(a−h)存在是 f ( x ) f(x) f(x)在 x = a x=a x=a处可导的一个充分条件
lim h → 0 f ( a + h ) − f ( a − h ) 2 h = lim h → 0 1 2 [ f ( a + h ) − f ( a ) h − f ( a − h ) − f ( a ) h ] \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h}=\lim\limits_{h\to0} \frac{1}{2}[\frac{f(a+h)-f(a)}{h}- \frac{f(a-h)-f(a)}{h}] h→0lim2hf(a+h)−f(a−h)=h→0lim21[hf(a+h)−f(a)−hf(a−h)−f(a)]
题中只说明了 lim h → 0 f ( a + h ) − f ( a − h ) 2 h \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h} h→0lim2hf(a+h)−f(a−h)存在,无法说明 lim h → 0 f ( a + h ) − f ( a ) h \lim\limits_{h\to0}\frac{f(a+h)-f(a)}{h} h→0limhf(a+h)−f(a)或 lim h → 0 f ( a − h ) − f ( a ) h \lim\limits_{h\to0}\frac{f(a-h)-f(a)}{h} h→0limhf(a−h)−f(a)中任何一个存在
因此 lim h → 0 f ( a + h ) − f ( a − h ) 2 h \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h} h→0lim2hf(a+h)−f(a−h)存在不是 f ( x ) f(x) f(x)在 x = a x=a x=a处可导的一个充分条件
例如 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=∣x∣,对 a = 0 a=0 a=0有
lim h → 0 f ( a + h ) − f ( a − h ) 2 h = lim h → 0 ∣ h ∣ − ∣ − h ∣ 2 h = 0 \lim\limits_{h\to0}\frac{f(a+h)-f(a-h)}{2h}=\lim\limits_{h\to0}\frac{|h|-|-h|}{2h}=0 h→0lim2hf(a+h)−f(a−h)=h→0lim2h∣h∣−∣−h∣=0
例13:设函数 y = 1 2 x + 3 y=\frac{1}{2x+3} y=2x+31,则 y ( n ) ( 0 ) = ( ) y^{(n)}(0)=() y(n)(0)=()
y = ( 2 x + 3 ) − 1 y ′ = ( − 1 ) ( 2 x + 3 ) − 2 ⋅ 2 y ′ ′ = ( − 1 ) ( − 2 ) ( 2 x + 3 ) − 3 ⋅ 2 2 y ( n ) = ( − 1 ) n n ! ( 2 x + 3 ) − ( n + 1 ) ⋅ 2 n y ( n ) ( 0 ) = ( − 1 ) n n ! 2 n 3 n + 1 \begin{aligned} y&=(2x+3)^{-1}\\ y'&=(-1)(2x+3)^{-2}\cdot 2\\ y''&=(-1)(-2)(2x+3)^{-3}\cdot 2^{2}\\ y^{(n)}&=(-1)^{n}n!(2x+3)^{-(n+1)}\cdot 2^{n}\\ y^{(n)}(0)&=\frac{(-1)^{n}n!2^{n}}{3^{n+1}} \end{aligned} yy′y′′y(n)y(n)(0)=(2x+3)−1=(−1)(2x+3)−2⋅2=(−1)(−2)(2x+3)−3⋅22=(−1)nn!(2x+3)−(n+1)⋅2n=3n+1(−1)nn!2n
例14:函数 f ( x ) = x 2 2 x f(x)=x^{2}2^{x} f(x)=x22x在 x = 0 x=0 x=0处的 n n n阶导数 f ( n ) ( 0 ) = ( ) f^{(n)}(0)=() f(n)(0)=()
f ( x ) = x 2 2 x f(x)=x^{2}2^{x} f(x)=x22x,令 x 2 = u , 2 x = v x^{2}=u,2^{x}=v x2=u,2x=v
( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) u = x 2 , u ′ = 2 x , u ′ ′ = 2 , u ′ ′ ′ = 0 v ′ = 2 x ln 2 , v ′ ′ = 2 x ( ln 2 ) 2 , v ( n ) = 2 x ( ln 2 ) ( n ) \begin{gathered} (uv)^{(n)}=\sum\limits^{n}_{k=0}C^{k}_{n}u^{(k)}v^{(n-k)}\\ u=x^{2},u'=2x,u''=2,u'''=0\\ v'=2^{x}\ln2,v''=2^{x}(\ln2)^{2},v^{(n)}=2^{x}(\ln 2)^{(n)} \end{gathered} (uv)(n)=k=0∑nCnku(k)v(n−k)u=x2,u′=2x,u′′=2,u′′′=0v′=2xln2,v′′=2x(ln2)2,v(n)=2x(ln2)(n)
代入 f ( n ) ( 0 ) f^{(n)}(0) f(n)(0),注意 x = 0 x=0 x=0
f ( n ) ( 0 ) = C n 2 u ′ ′ ( 0 ) v ( n − 2 ) ( 0 ) = n ( n − 1 ) ( ln 2 ) n − 2 f^{(n)}(0)=C^{2}_{n}u''(0)v^{(n-2)}(0)=n(n-1)(\ln2)^{n-2} f(n)(0)=Cn2u′′(0)v(n−2)(0)=n(n−1)(ln2)n−2
例15:对数螺线 ρ = e θ \rho=e^{\theta} ρ=eθ在点 ( ρ , θ ) = ( e π 2 , π 2 ) (\rho,\theta)=(e^{\frac{\pi}{2}},\frac{\pi}{2}) (ρ,θ)=(e2π,2π)处的切线的直角坐标方程为()
转化为参数方程
ρ = e θ ⇒ { x = e θ cos θ y = e θ sin θ \rho=e^{\theta}\Rightarrow \begin{cases} x=e^{\theta}\cos \theta \\ y=e^{\theta}\sin \theta \end{cases} ρ=eθ⇒{x=eθcosθy=eθsinθ
求导
d y d x = e θ sin θ + e θ cos θ e θ cos θ − e θ sin θ d y d x ∣ θ = π 2 = − 1 \frac{dy}{dx}=\frac{e^{\theta}\sin \theta+e^{\theta}\cos \theta}{e^{\theta}\cos \theta-e^{\theta}\sin \theta}\quad \frac{dy}{dx}\Big|_{\theta=\frac{\pi}{2}}=-1 dxdy=eθcosθ−eθsinθeθsinθ+eθcosθdxdy∣ ∣θ=2π=−1
所以方程为 x + y = e π 2 x+y=e^{\frac{\pi}{2}} x+y=e2π
例16:已知动点 P P P在曲线 y = x 3 y=x^{3} y=x3上运动,记坐标原点与点 P P P间的距离为 l l l。若点 P P P的横坐标对时间的变化率为常数 v 0 v_{0} v0,则当点 P P P运动到点 ( 1 , 1 ) (1,1) (1,1)时, l l l对时间的变化率是()
由题意知
d x d t = v 0 , l = x 2 + y 2 = x 2 + x 6 \frac{dx}{dt}=v_{0},l=\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+x^{6}} dtdx=v0,l=x2+y2=x2+x6
求导
d l d t = 2 x + 6 x 5 2 x 2 + x 6 ⋅ d x d t = 2 x + 6 x 5 2 x 2 + x 6 ⋅ v 0 ∣ x = 1 = 2 2 v 0 \frac{dl}{dt}=\frac{2x+6x^{5}}{2\sqrt{x^{2}+x^{6}}}\cdot \frac{dx}{dt}=\frac{2x+6x^{5}}{2\sqrt{x^{2}+x^{6}}}\cdot v_{0}\Big|_{x=1}=2\sqrt{2}v_{0} dtdl=2x2+x62x+6x5⋅dtdx=2x2+x62x+6x5⋅v0∣ ∣x=1=22v0
活动地址:CSDN21天学习挑战赛