黑书上的DP例题

page section no title submit
113 1.5.1 例题1 括号序列 POJ1141
116 1.5.1 例题2 棋盘分割 POJ1191
117 1.5.1 例题3 决斗 Sicily1822
117 1.5.1 例题4 “舞蹈家”怀特先生 ACM-ICPC Live Archive
119 1.5.1 例题5 积木游戏 http://202.120.80.191/problem.php?problemid=1244
123 1.5.2 例题1 方块消除 http://poj.org/problem?id=1390
123 1.5.2 例题2 公路巡逻 http://202.120.80.191/problem.php?problemid=1600
125 1.5.2 例题3 并行期望值 POJ1074
131 1.5.2 例题6 不可分解的编码 http://acmicpc-live-archive.uva.es/nuevoportal/data/problem.php?p=2475
133 1.5.2 例题7 青蛙的烦恼 http://codewaysky.sinaapp.com/problem.php?id=1014
135 1.5.2 例题9 最优排序二叉树 http://judge.noi.cn/problem?id=1059
138 1.5.2 例题10 Bugs公司 POJ1038
139 1.5.2 例题11 迷宫统计 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=70&page=show_problem&problem=1472
142 1.5.2 例题12 贪吃的九头龙 http://judge.noi.cn/problem?id=1043
151 1.5.3 问题2 最长上升子序列问题 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=17&page=show_problem&problem=1475
151 1.5.3 问题3 最优二分检索树 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=15&page=show_problem&problem=1245
152 1.5.3 问题4 任务调度问题 POJ1180
121 1.5.1 1.5.8 艺术馆的火灾 http://221.192.240.23:9088/showproblem?problem_id=1366
144 1.5.2 1.5.10 快乐的蜜月 http://judge.noi.cn/problem?id=1052
145 1.5.2 1.5.12 佳佳的筷子 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=14&page=show_problem&problem=1212
146 1.5.2 1.5.13 偷懒的工人 POJ1337
146 1.5.2 1.5.15 平板涂色 POJ1691
147 1.5.2 1.5.16 道路重建 POJ1947
147 1.5.2 1.5.17 圆和多边形 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1679
148 1.5.2 1.5.18 Jimmy落地 POJ1661
148 1.5.2 1.5.19 免费糖果 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=13&page=show_problem&problem=1059
157 1.5.3 1.5.22 回文词 POJ1159
157 1.5.3 1.5.24 邮局 POJ1160
158 1.5.3 1.5.26 奶牛转圈 POJ1946
158 1.5.3 1.5.27 元件折叠 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=14&page=show_problem&problem=1180

现在开始训练一下DP:

递归动机的DP:

pku 1141 Brackets Sequence

黑书上讲的第一个题目,题意就给出一个括号序列,包含有"(" ")" "[" "]" 求最少添加的括号数是的最终的序列是合法的并输出这个序列。

思路:
首先这里求解的话要使用递归的思路,这是动态规划产生的第一种动机,于是我们可以写出记忆化搜索。进行求解。

dp[l][r] = min(dp[l][r],dp[l + 1][r - 1])如果s[l]与s[r]匹配的话。

否则我们就将该序列分成两段分别求解(这也是求解DP线性模型的一种递归分解思路)

dp[l][r] = min(dp[l][r],dp[l][k] + dp[k + 1][r])

这里关键是怎么讲可行解输出呢?开始我是通过比较dp[l][r] 与 dp[l + 1][r  -1] dp[l][k] + dp[k + 1][r]来判断的后来发现这样不对的 如果dp[l + 1][r - 1] = dp[l][k] + dp[k + 1][r]的话就会出现错误,而我们这里dp[l][r]确实从dp[l][k] + dp[k + 1][r]来的。所以,我们要另开一个二维数组记录每种最优状态的来源点。然后再递归的输出即可。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll __int64

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 137

#define N 115



using namespace std;





const int inf = 0x7f7f7f7f;

const int mod = 1000000007;



int dp[N][N];

char s[N];

int mk[N][N];



bool cmp(char a,char b)

{

    if ((a == '(' && b == ')') || (a == '[' && b == ']')) return true;

    return false;

}

int dfs_DP(int l,int r)

{

    int k;

    if (l > r) return 0;

    if (l == r) return (dp[l][r] = 1);

    if (dp[l][r] != inf) return dp[l][r];



    if (cmp(s[l],s[r]))

    {

        if (l + 1 == r)

        {

            dp[l][r] = 0;

            mk[l][r] = -1;

        }

        else

        {

            dfs_DP(l + 1,r - 1);

            if (dp[l][r] > dp[l + 1][r - 1])

            {

                dp[l][r] = dp[l + 1][r - 1];

                mk[l][r] = -1;

            }



    //        dp[l][r] = min(dp[l][r],dfs_DP(l + 1,r - 1));

//             printf(">>>**%d %d %d %d\n",l,r,dp[l][r],dp[l + 1][r - 1]);

        }

    }



    for (k = l; k <= r - 1; ++k)

    {

        dfs_DP(l,k); dfs_DP(k + 1,r);

        if (dp[l][r] >  dp[l][k] + dp[k + 1][r])

        {

            dp[l][r] = dp[l][k] + dp[k + 1][r];

            mk[l][r] = k;

        }

//        dp[l][r] = min(dp[l][r],dfs_DP(l,k) + dfs_DP(k + 1,r));

    }

    return dp[l][r];

}





void print(int l,int r)

{

    if (l > r) return;

    if (l == r)

    {

        if (s[l] == '(' || s[l] == ')') printf("()");

        else if (s[l] == '[' || s[l] == ']') printf("[]");

        return;

    }

    if (cmp(s[l],s[r]) && mk[l][r] == -1)

    {

        printf("%c",s[l]);

        print(l + 1,r - 1);

        printf("%c",s[r]);

    }

    else

    {

        print(l,mk[l][r]);

        print(mk[l][r] + 1,r);

    }

}

int main()

{

//   Read();

//   Write();

   int i,j;

   scanf("%s",s);

   int n = strlen(s);

   CL(mk,-1);

   for (i = 0; i <= n; ++i)

   {

       for (j = 0; j <= n; ++j)

       {

           dp[i][j] = inf;

       }

   }

   dfs_DP(0,n - 1);

//   printf("%d\n",dp[0][n - 1]);

   print(0,n - 1);

   printf("\n");

   return 0;

}

 

 pku 1191 棋盘分割

思路:
棋盘横着切竖着切,然后递归将棋盘不断缩小到能够求解的状态。记忆化搜索。这里中间计算值可能会超0x7f7f7f7f,所以最大值取大一点。这里让哥条了很长时间。。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll __int64

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 137

#define N 10



using namespace std;





const int inf = 0x7f7f7f7f;

const int mod = 1000000007;



int mat[N][N];

int s[N][N][N][N];

int dp[N][N][N][N][20];

ll map[N][N];



int n;



int DP(int x1,int y1,int x2,int y2,int no)

{

    int x,y;

    if (no == 1) return dp[x1][y1][x2][y2][no];

    if (dp[x1][y1][x2][y2][no] != -1) return dp[x1][y1][x2][y2][no];

    int ans = 999999999;

    for (x = x1; x < x2; ++x)

    {

        ans = min(ans,min(DP(x1,y1,x,y2,no - 1) + s[x + 1][y1][x2][y2],DP(x + 1,y1,x2,y2,no - 1) + s[x1][y1][x][y2]));

    }

    for (y = y1; y < y2; ++y)

    {

          ans = min(ans,min(DP(x1,y1,x2,y,no - 1) + s[x1][y + 1][x2][y2],DP(x1,y + 1,x2,y2,no - 1) + s[x1][y1][x2][y]));

    }

    return (dp[x1][y1][x2][y2][no] = ans);

}

int main()

{

//    Read();

    int i,j;

    scanf("%d",&n);

    int sum = 0;

    for (i = 1; i <= 8; ++i)

    {

        for (j = 1; j <= 8; ++j)

        {

            scanf("%d",&mat[i][j]);

            sum += mat[i][j];

        }

    }



    CL(s,0); CL(dp,-1);

    int x1,y1,x2,y2;

    for (x1 = 1; x1 <= 8; ++x1)

    {

        for (y1 = 1; y1 <= 8; ++y1)

        {

            for (x2 = x1; x2 <= 8; ++x2)

            {

                for (y2 = y1; y2 <= 8; ++y2)

                {

//                    printf("%d %d %d %d\n",x1,y1,x2,y2);

                    for (i = x1; i <= x2; ++i)

                    {

                        for (j = y1; j <= y2; ++j)

                        {

                            s[x1][y1][x2][y2] += mat[i][j];

                        }

                    }



                    s[x1][y1][x2][y2] *=  s[x1][y1][x2][y2];



                    dp[x1][y1][x2][y2][1] = s[x1][y1][x2][y2];

                }

            }

        }

    }





    DP(1,1,8,8,n);

    double ans = (1.0*dp[1][1][8][8][n])/(1.0*n) - (1.0*sum*sum)/(1.0*n*n);

    printf("%.3f\n",sqrt(ans));

    return 0;

}

 

 sicily 1822 Fight Club

题意:黑书

思路:

开始吧题意理解错了,一位如果判断i必须从i开始一次与i + 1,i +2比较呢。SB了。。

dp[i][j]表示i能否与j相遇,记住这里是相遇不表示i与j谁能打败谁。如果判断x点,我们把x点查分为x与n + 1,这样讲原来的环转化成连,然后求x与n +1是否能够相遇即可

dp[i][j] = (dp[i][k] && dp[k][j] && (mat[i][k],mat[j][k])),mat[i][j]表示i能否打败j

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll __int64

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 137

#define N 50



using namespace std;



const int inf = 0x7f7f7f7f;

const int mod = 1000000007;



int mat[N][N];



int dp[N][N];

int seq[N];

bool vt[N][N];



int n;

int DP(int l,int r)

{

    int k;

    if (vt[l][r]) return dp[l][r];



    for (k = l + 1; k <= r - 1; ++k)

    {

        dp[l][r] = (DP(l,k)&&DP(k,r)&&(mat[seq[l]][seq[k]] || mat[seq[r]][seq[k]]));

        if (dp[l][r]) break;

    }

    vt[l][r] = true;

    return dp[l][r];

}

int main()

{

//    Read();

    int T,i,j;

    scanf("%d",&T);

    while (T--)

    {

        scanf("%d",&n);

        CL(mat,0);

        for (i = 1; i <= n; ++i)

        for (j = 1; j <= n; ++j)

        scanf("%d",&mat[i][j]);





        for (i = 1; i <= n; ++i)

        {

            CL(dp,0); CL(vt,false);



            int pos = (i - 1);

            if (pos == 0) pos = n;



            int ln = 0;

            for (j = i; j <= n; ++j) seq[++ln] = j;

            for (j = 1; j <= i - 1; ++j) seq[++ln] = j;

            seq[++ln] = n + 1;



            for (j = 1; j <= n; ++j)

            {

                dp[j][j + 1] = dp[j + 1][j] = 1;

                vt[j][j + 1] = vt[j + 1][j] = true;

            }



            DP(1,ln);

            if (dp[1][ln]) printf("1\n");

            else printf("0\n");

        }

//        if (T != 0)

        printf("\n");

    }



    return 0;

}

 

hdu 3632 A Captivating Match

题意:

这题和上题目意思一样,只不过这里是序列1-n然后每个人可以选择左右两边的人进行对决,我刚开始看到这题目的时候,就以为是上边那道题目,结果样例过了,就是不对。

思路:
这里某个人i如果能够胜出,那么他一定能够和0点并且和n + 1点相遇。(与上题一样,抽象出来的两个点)。然后我们只要枚举任意两点是否能够相遇即可,

dp[i][j] = (dp[i][k] && dp[k][j] && (mat[i][k],mat[j][k])),mat[i][j]表示i能否打败j,   这里根据i到j的距离进行递推的。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val)    memset(arr, val, sizeof(arr))

#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll __int64

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 30007

#define N 117



using namespace std;



const int inf = 100000007;

const int mod = 1000000007;



int val[N];

int mat[N][N];

int n;

int dp[N][N];

bool vt[N][N];



bool isok(int i,int j,int k)

{

    if (dp[i][k] && dp[k][j] && (mat[i][k] || mat[j][k])) return true;

    else return false;

}

int main()

{

//    Read();

    int T,i,j;

    int cas = 1;

    scanf("%d",&T);

    while (T--)

    {

        scanf("%d",&n);

        for (i = 1; i <= n; ++i) scanf("%d",&val[i]);

        CL(mat,0);//记住要初始化

        for (i = 1; i <= n; ++i)

        for (j = 1; j <= n; ++j) scanf("%d",&mat[i][j]);



        CL(dp,0);

        for (i = 0; i <= n + 1; ++i) dp[i][i + 1] = dp[i + 1][i] = 1;

        int k,p;

        for (k = 2; k <= n; ++k)//递推策略

        {

            for (i = 0; i + k <= n + 1; ++i)

            {

                j = i + k;

                for (p = i + 1; p <= j - 1; ++p)

                {

                    if (isok(i,j,p))

                    {

                        dp[i][j] = 1;

                    }

                }

            }

        }

        int ans = 0;

        for (i = 1; i <= n; ++i)

        {

            if (dp[0][i] && dp[i][n + 1] && val[i] > ans) ans = val[i]; //i能否杀到0并且能够杀到n + 1

        }

        printf("Case %d: %d\n",cas++,ans);

    }

    return 0;

}

 

pku 1390 Blocks

题意:看给书吧..

思路:

我们考虑的是最后一段是单独消去还是和前边的一起消去,这样就可以构造出递归的递推式了。

题目的方块可以表示称color[i],len[i],1<=i<=l
这里l表示有多少"段"不同的颜色方块
color[i]表示第i段的颜色,len[i]表示第i段的方块长度
让f[i,j,k]表示把(color[i],len[i]),(color[i+1],len[i+1]),...,(color[j-1],len[j-1]),(color[j],len[j]+k)合并的最大得分
考虑(color[j],len[j]+k)这一段,要不马上消掉,要不和前面的若干段一起消掉
1.如果马上消掉,就是f[i,j-1,0]+(len[j]+k)^2
2.如果和前面的若干段一起消,可以假设这"若干段"中最后一段是p,则此时的得分是f[i,p,k+len[j]]+f[p+1,j-1,0]
于是f[i,j,k] = max{ f[i,j-1,0]+(len[j]+k)^2, f[i,p,k+len[j]]+f[p+1,j-1,0] 

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>

#include <utility>





#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll long long

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 137

#define N 207



using namespace std;



const int inf = 0x7f7fffff;

const ll mod = 1000000007;



int dp[N][N][N];

int a[N],of[N],b[N];

int n,ln;



int q_DP(int l,int r,int k)

{

    int p;

    if (dp[l][r][k] != 0) return dp[l][r][k];

    if (l == r)

    {

        return (dp[l][r][k] = (b[r] + k)*(b[r] + k));

    }

    int ans = 0;

    ans = max(ans,q_DP(l,r - 1,0) + (b[r] + k)*(b[r] + k));



    for (p = l; p + 1 <= r - 1; ++p)

    {

        if (of[r] == of[p])

        ans = max(ans,q_DP(l,p,k + b[r]) + q_DP(p + 1,r - 1,0));

    }

    return dp[l][r][k] = ans;

}

int main()

{

//    Read();

    int i;



    int T,cas = 1;

    scanf("%d",&T);

    while (T--)

    {

        scanf("%d",&n);

        ln = 0; CL(a,0);

        for (i = 0; i < n; ++i)

        {

            scanf("%d",&a[i]);

        }

        ln = 0; int ct = 0;

        for (i = 0; i < n; ++i)

        {

            if (a[i] != a[i + 1])

            {

                b[++ln] = ct + 1;

                of[ln] = a[i];

                ct = 0;

            }

            else ct++;

        }

//        b[++ln] = ct;

//        of[ln] = a[n - 1];

        CL(dp,0);

        q_DP(1,ln,0);

        printf("Case %d: %d\n",cas++,dp[1][ln][0]);

    }

    return 0;

}

 

 

 

 

 多决策动机的DP:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=32

题意:黑书。。

思路:
这里每一步要么走左腿,要么走右腿,要么原地不动。DFS求解肯定超时,因为状态数太多,所以我们只好利用DP记录所有状态,然后通过每一步的决策。求解所有满足条件的状态。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll __int64

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 137

#define N 10017



using namespace std;



const int inf = 0x7f7fffff;

const int mod = 1000000007;



int a[N];

int dp[5][5][3];





int getS(int x,int y)

{

    if (x == 0) return 2;

    else if (x == y) return 1;

    else if (abs(x - y) == 2) return 4;

    else return 3;

}

int main()

{

//    Read();

    int i,j,k;

    int n;

    a[0] = 0;

    while (~scanf("%d",&a[1]))

    {

        if (a[1] == 0) break;

        i = 2;

        while (scanf("%d",&a[i]))

        {

            if (a[i] == 0) break;

            i++;

        }

        n = i - 1;



        for (i = 0; i <= 4; ++i)

        {

            for (j = 0; j <= 4; ++j)

            {

                for (k = 0; k <= 1; ++k)

                dp[i][j][k] = inf;

            }

        }



        dp[0][0][0] = 0;

        int u = 0, v = 1;

        for (k = 0; k < n; ++k)

        {

            for (i = 0; i <= 4; ++i)

            {

                for (j = 0; j <= 4; ++j)

                {

                    if (dp[i][j][u] != inf)

                    {

                        if (a[k + 1] != j) //保证左右脚不能在一起

                        dp[a[k + 1]][j][v] = min(dp[a[k + 1]][j][v],dp[i][j][u] + getS(i,a[k + 1]));

                        if (i != a[k + 1])

                        dp[i][a[k + 1]][v] = min(dp[i][a[k + 1]][v],dp[i][j][u] + getS(j,a[k + 1]));

                    }

                }

            }

            swap(u,v); //滚动数组优化

            for (i = 0; i <= 4; ++i)

            {

                for (j = 0; j <= 4; ++j)

                {

                    dp[i][j][v] = inf;

                }

            }



        }



        int ans = inf;

        for (i = 0; i <= 4; ++i)

        {

            if (i != a[n])

            ans = min(dp[i][a[n]][u],ans);

        }

        for (j = 0; j <= 4; ++j)

        {

            if (j != a[n])

            ans = min(dp[a[n]][j][u],ans);

        }

        printf("%d\n",ans);

    }

    return 0;

}

 

积木游戏

题意:。。。

思路:
就是按着黑书上的第一种思路做的,这里有个地方卡了一下, 就是j表示的类成了j堆,在枚举的时候不能只到m-1否则最后累到第m的堆的最后一个也就不存在了,。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>

#include <utility>





#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll long long

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 137

#define N 107



using namespace std;



const int inf = 0x7f7fffff;

const ll mod = 1000000007;



int dp[N][N][N][4];

bool vt[N][N][N][4];

int a[N][4][4];

int n,m;



bool over(int i,int x,int j,int y)

{

    int sda = max(a[i][x][0],a[i][x][1]);

    int sdb = min(a[i][x][0],a[i][x][1]);

    int pda = max(a[j][y][0],a[j][y][1]);

    int pdb = min(a[j][y][0],a[j][y][1]);

    if (sda <= pda && sdb <= pdb) return true;

    else return false;

}

int main()

{

//    Read();

    int i,j,k,p,q;

    int x,y,z;



    scanf("%d%d",&n,&m);

    CL(a,0);

    for (i = 1; i <= n; ++i)

    {

        scanf("%d%d%d",&x,&y,&z);

        //表示第i个面的的长宽高

        a[i][0][0] = x; a[i][0][1] = y; a[i][0][2] = z;

        a[i][1][0] = y; a[i][1][1] = z; a[i][1][2] = x;

        a[i][2][0] = z; a[i][2][1] = x; a[i][2][2] = y;

    }



    CL(dp,0); CL(vt,false);

    vt[0][0][0][0] = true;



    for (i = 0; i < n; ++i)

    {

        for (j = 0; j <= min(i,m); ++j)

        {

            for (k = 0; k <= i; ++k)

            {

                for (p = 0; p < 3; ++p)

                {

                    if (vt[i][j][k][p])

                    {

                        for (q = 0; q < 3; ++q)

                        {

                            //可以累加

                            if (over(i + 1,q,k,p))

                            {

                                dp[i + 1][j][i + 1][q] = max(dp[i + 1][j][i + 1][q],dp[i][j][k][p] + a[i + 1][q][2]);

                                vt[i + 1][j][i + 1][q] = true;

                            }

                            //另起一堆

                            dp[i + 1][j + 1][i + 1][q] = max(dp[i + 1][j + 1][i + 1][q],dp[i][j][k][p] + a[i + 1][q][2]);

                            vt[i + 1][j + 1][i + 1][q] = true;

                            //直接跳过

                            dp[i + 1][j][k][p] = max(dp[i + 1][j][k][p],dp[i][j][k][p]);

                            vt[i + 1][j][k][p] = true;

//                            printf(">>>>%d %d %d\n",dp[i + 1][j][i + 1][q],dp[i + 1][j + 1][i + 1][q],dp[i + 1][j][k][p]);

                        }

                    }

                }

            }

        }

    }

    int ans = 0;

//    printf("%d %d\n",n,m);

    for (k = 1; k <= n; ++k)

    {

        for (p = 0; p < 3; ++p)

        {

//            printf(">>>>>>%d\n",dp[n][m][k][p]);

            ans = max(ans,dp[n][m][k][p]);

        }

    }

    printf("%d\n",ans);

    return 0;

}

 

 公路巡逻

思路:

dp[i][j]表示到达在时间为j时第i个关口与巡逻车相遇的最少次数 dp[i + 1][j + 1] = max(dp[i + 1][j + 1],dp[i][j] + s); s表示目标车在 [j, j + k]时间段内从第i个关口出发到i + 1个关口与巡逻车相遇的次数。

其实状态转移很好想,只是在车辆相遇上脑子短路了,我们只要排除不相遇的就好了。

这里还没有优化。。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll long long

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din", "r", stdin)

#define Write() freopen("dout", "w", stdout);





#define M 86405

#define N 55



using namespace std;





const int inf = 0x7f7f7f7f;

const int mod = 1000000007;



struct node

{

    int s,e;

}nd[N][N];

int ln[N];





int dp[N][M];

bool vt[N][M];

int n,m;







int main()

{

//    Read();

    int i,j,k;

    int ni,di;

    char ti[7];

    scanf("%d%d",&n,&m);



    CL(ln,0);

    CL(nd,0);

    for (j = 0; j < m; ++j)

    {

        scanf("%d%s%d",&ni,ti,&di);

        int no = 0;   int sum = 0;

        for (i = 0; i < 6; ++i)

        {

            if (i%2 == 1)

            {

                no = no*10 + ti[i] - '0';

                int tmp = 0;

                if (i == 1) tmp = 3600;

                else if (i == 3) tmp = 60;

                else tmp = 1;

                sum += no*tmp;

                no = 0;

            }

            else

            {

                no = no*10 + ti[i] - '0';

            }

        }

        int &p = ln[ni];

        nd[ni][p].s = sum;

        nd[ni][p].e = sum + di;

        p++;

    }



    for (i = 1; i <= n; ++i)

    {

        for (j = 0; j <= 86400; ++j)

        {

            dp[i][j] = inf;

        }

    }



    CL(vt,false); dp[1][21600] = 0;

    vt[1][21600] = true;

    for (i = 1; i < n; ++i)

    {

        for (j = 21600; j <= 51000; ++j)

        {

            if (vt[i][j])

            {

                for (k = 300; k <= 600; ++k)

                {

                    int s = 0;

                    int p;

                    for (p = 0; p < ln[i]; ++p)

                    {

                        if (nd[i][p].e == j + k) s++;

                        else

                        {

                            if (j <= nd[i][p].s && j + k <= nd[i][p].e) continue;

                            if (j >= nd[i][p].s && j + k >= nd[i][p].e) continue;

                            s++;

                        }

                    }

                    dp[i + 1][j + k] = min(dp[i + 1][j + k],dp[i][j] + s);

                    vt[i + 1][j + k] = true;

                }

            }

        }

    }

    int ans = inf;

    int tim = 0;

    for (i = 21600; i <= 51000; ++i)

    {

        if (vt[n][i] && dp[n][i] < ans)

        {

            ans = dp[n][i];

            tim = i;

        }

    }

    int hh = tim/3600;

    tim -= hh*3600;

    int mm = tim/60;

    tim -= mm*60;

    int ss = tim;

    printf("%d\n%02d%02d%02d\n",ans,hh,mm,ss);

    return 0;

}

 

 ===================================================================

 

poj 1337 A Lazy Worker

题意:

一个懒工人,他想工作的时间尽量少。有N个任务,每个任务有开始时间和deadline,工人完成这个工作需要ti时间。如果某个时刻有工作可以做(这里是说,如果从这个时刻开始某个工作,在deadline之前能够完成),那么这个工人必须做,但是如果这个时刻存在着多余1件工作可以做,工人可以选择;假设这个时刻没有工作可以做了,工人就可以偷懒直到有新的任务到来

思路:

刚开始以为只要我一空下来有工作,我就必须从这一点开始工作来着,其实不是的,只要在最晚期限之前完成该工作即可。

dp[i]表示在时间点i时,完成工作所需要的最少时间,dp[i + 1] = min(dp[i + 1],dp[i])当该时间没有工作干时,当有多个工作时,dp[i + tk] = min(dp[i + tk],dp[i] + tk) k表示第k个工作可以再时间点i完成

这里注意inf = 0x3fffffff 因为会有inf的相加,这里快整死我了,给很长时间没有条出来。。

View Code
#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>

#include <list>



#define CL(arr, val)    memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define ll long long

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("dout.txt", "w", stdout);





#define M 107

#define N 117

using namespace std;



const ll mod = 1000000007;

const int inf = 0x3fffffff;



struct node

{

    int ti,ai,di;

}nd[N];



int dp[260];

vector<int> work[260];



int main()

{

//    Read();

//    printf("%d \n%d\n",0x7fffffff,0x3fffffff);

    int T;

    int i,j;

    int n;

    scanf("%d",&T);



    while (T--)

    {

        scanf("%d",&n);

        int s = inf, e = 0;

        for (i = 0; i < n; ++i)

        {

            scanf("%d%d%d",&nd[i].ti,&nd[i].ai,&nd[i].di);

            s = min(s,nd[i].ai); e = max(e,nd[i].di);

        }

        for (i = s; i <= e; ++i)

        {

            work[i].clear();

            for (j = 0; j < n; ++j)

            {

                if (i >= nd[j].ai && i + nd[j].ti <= nd[j].di)

                {

                    work[i].push_back(j);

                }

            }

        }



        for (i = s; i <= e; ++i) dp[i] = inf;

        dp[s] = 0;

        for (i = s; i < e; ++i)

        {

            if (work[i].size() == 0) dp[i + 1] = min(dp[i + 1],dp[i]);

            else

            {

                int sz = work[i].size();

                for (int j = 0; j < sz; ++j)

                {

                    int k = work[i][j];



                    dp[i + nd[k].ti] = min(dp[i + nd[k].ti],dp[i] + nd[k].ti);

                }

            }

        }

        printf("%d\n",dp[e]);

    }

    return 0;

}

 

 

 

 

你可能感兴趣的:(dp)