14天学习训练营导师课程:
杨鑫《Python 自学编程基础》
杨鑫《 Python 网络爬虫基础》
杨鑫《 Scrapy 爬虫框架实战和项目管理》
w3schools
传送门
geeksforgeeks
传送门
realpython
传送门
引用杨老师说的:
中文的这里不推荐,因为很多机构的翻译水品参差不齐,直接看英文的自己学吧,这个能快速的提升你的技能水平,
不光是编程,还有英语。
你可能会问为什么不推荐书籍,因为书籍的时效性太低了,可能出版之后版本都换了好几轮了,
很多里面的代码都跑不通,具体为什么里也不会给你说,所以直接看网站的教程是最好的选择。
numpy官方文档介绍
Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展
Numpy是高性能科学计算和数据分析的基础包。它也是pandas等其他数据分析的工具的基础,基本所有数据分析的包都用过它。NumPy为Python带来了真正的多维数组功能,并且提供了丰富的函数库处理这些数组。它将常用的数学函数都支持向量化运算,使得这些数学函数能够直接对数组进行操作
2.安装 numpy,pip 命令安装 ,我们使用豆瓣的镜像源来安装
pip install numpy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
3.导包
import numpy as np
numpy数组即numpy的ndarray对象,创建numpy数组就是把一个列表传入np.array()方法。
创建一维、二维、三维ndarray对象
# @Time : 2022/11/24 19:25
# @Author : hyh
# @File : Numpy模块练习.py
# @Software : PyCharm
import numpy as np
# np.array? 相当于pycharm的ctrl+鼠标左键
# 创建一维的ndarray对象
arr = np.array([1, 2, 3])
print(arr, type(arr))
# 创建二维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6]]))
# 创建三维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
执行结果:
由于numpy数组是多维的,对于二维的数组而言,numpy数组就是既有行又有列。
注意:对于numpy我们一般多讨论二维的数组。
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
# 获取numpy数组的行和列构成的数组
print(arr.shape)
# 获取numpy数组的行
print(arr.shape[0])
# 获取numpy数组的列
print(arr.shape[1])
执行结果:
[[1 2 3]
[4 5 6]]
获取numpy数组的行和列构成的数组
(2, 3)
获取numpy数组的行
2
获取numpy数组的列
3
切分numpy数组类似于列表的切割,但是与列表的切割不同的是,numpy数组的切割涉及到行和列的切割,但是两者切割的方式都是从索引0开始,并且取头不取尾。
# @Time : 2022/11/24 19:45
# @Author : hyh
# @File : 切割numpy数组.py
# @Software : PyCharm
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
print('取所有元素')
# 取所有元素
print(arr[:, :])
print('取第一行的所有元素')
# 取第一行的所有元素
print(arr[:1, :])
print('取第一列的所有元素')
# 取第一列的所有元素
print(arr[:, :1])
print('取第一列的所有元素')
# 取第一列的所有元素
print(arr[(0, 1, 2), 0])
print('取第一行第一列的元素')
# 取第一行第一列的元素
print(arr[(0, 1, 2), 0])
print('取第一行第一列的元素')
# 取第一行第一列的元素
print(arr[0, 0])
print('取大于5的元素,返回一个数组')
# 取大于5的元素,返回一个数组
print(arr[arr > 5])
print('numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组')
# numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组
print(arr > 5)
执行结果:
"D:\Program Files\Python\Python36\python.exe" D:/E/PythonWork/Pytest2022/CSDN打卡/切割numpy数组.py
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
取所有元素
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
取第一行的所有元素
[[1 2 3 4]]
取第一列的所有元素
[[1]
[5]
[9]]
取第一列的所有元素
[1 5 9]
取第一行第一列的元素
[1 5 9]
取第一行第一列的元素
1
取大于5的元素,返回一个数组
[ 6 7 8 9 10 11 12]
numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组
[[False False False False]
[False True True True]
[ True True True True]]
Process finished with exit code 0
numpy数组元素的替换,类似于列表元素的替换,并且numpy数组也是一个可变类型的数据,即如果对numpy数组进行替换操作,会修改原numpy数组的元素,所以下面我们用.copy()方法举例numpy数组元素的替换。
# @Time : 2022/11/24 19:53
# @Author : hyh
# @File : numpy数组元素替换.py
# @Software : PyCharm
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
print('取第一行的所有元素,并且让第一行的元素都为0')
# 取第一行的所有元素,并且让第一行的元素都为0
arr1 = arr.copy()
arr1[:1, :] = 0
print(arr1)
print('取所有大于5的元素,并且让大于5的元素为0')
# 取所有大于5的元素,并且让大于5的元素为0
arr2 = arr.copy()
arr2[arr > 5] = 0
print(arr2)
print('对numpy数组清零')
# 对numpy数组清零
arr3 = arr.copy()
arr3[:, :] = 0
print(arr3)
执行结果:
"D:\Program Files\Python\Python36\python.exe" D:/E/PythonWork/Pytest2022/CSDN打卡/numpy数组元素替换.py
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
取第一行的所有元素,并且让第一行的元素都为0
[[ 0 0 0 0]
[ 5 6 7 8]
[ 9 10 11 12]]
取所有大于5的元素,并且让大于5的元素为0
[[1 2 3 4]
[5 0 0 0]
[0 0 0 0]]
对numpy数组清零
[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
Process finished with exit code 0
numpy数组的合并
# @Time : 2022/11/24 20:39
# @Author : hyh
# @File : numpy数组合并.py
# @Software : PyCharm
import numpy as np
arr1 = np.array([[1, 2], [3, 4], [5, 6]])
print(arr1)
arr2 = np.array([[7, 8], [9, 10], [11, 12]])
print(arr2)
print('合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的')
# 合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的
print(np.hstack((arr1, arr2)))
print('合并两个numpy数组,其中axis=1表示合并两个numpy数组的行')
# 合并两个numpy数组,其中axis=1表示合并两个numpy数组的行
print(np.concatenate((arr1, arr2), axis=1))
print('合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的')
# 合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的
print(np.vstack((arr1, arr2)))
print('合并两个numpy数组,其中axis=0表示合并两个numpy数组的列')
# 合并两个numpy数组,其中axis=0表示合并两个numpy数组的列
print(np.concatenate((arr1, arr2), axis=0))
执行结果:
"D:\Program Files\Python\Python36\python.exe" D:/E/PythonWork/Pytest2022/CSDN打卡/numpy数组合并.py
[[1 2]
[3 4]
[5 6]]
[[ 7 8]
[ 9 10]
[11 12]]
合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的
[[ 1 2 7 8]
[ 3 4 9 10]
[ 5 6 11 12]]
合并两个numpy数组,其中axis=1表示合并两个numpy数组的行
[[ 1 2 7 8]
[ 3 4 9 10]
[ 5 6 11 12]]
合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的
[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[ 9 10]
[11 12]]
合并两个numpy数组,其中axis=0表示合并两个numpy数组的列
[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[ 9 10]
[11 12]]
Process finished with exit code 0
属性 | 解释 |
---|---|
T | 数组的转置(对高维数组而言) |
dtype | 数组元素的数据类型 |
size | 数组元素的数据类型 |
ndim | 数组的维数 |
shape | 数组的维度大小(以元组形式) |
astype | 类型转换 |