矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现

矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现

Neural Graph Collaborative Filtering (NGCF) is a new recommendation framework based on graph neural network, explicitly encoding the collaborative signal in the form of high-order connectivities in user-item bipartite graph by performing embedding propagation.

https://github.com/xiangwang1223/neural_graph_collaborative_filtering
bash /public/script/switch_conda_source.sh

矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现_第1张图片

git clone https://github.com/xiangwang1223/neural_graph_collaborative_filtering.git
bash /public/script/switch_conda_source.sh
conda create -n py36 python=3.6.5

矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现_第2张图片

# To activate this environment, use
#
#     $ conda activate py36
#
# To deactivate an active environment, use
#
#     $ conda deactivate
conda activate py36

在这里插入图片描述
矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现_第3张图片

pip install tensorflow-gpu==1.8.0
pip install scipy==1.1.0
pip install scikit-learn==0.19.1
pip install numpy==1.14.3

矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现_第4张图片

cd /neural_graph_collaborative_filtering/NGCF/
python NGCF.py

矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现_第5张图片

Gowalla dataset

python NGCF.py --dataset gowalla --regs [1e-5] --embed_size 64 --layer_size [64,64,64] --lr 0.0001 --save_flag 1 --pretrain 0 --batch_size 1024 --epoch 400 --verbose 1 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1]

Amazon-book dataset

python NGCF.py --dataset amazon-book --regs [1e-5] --embed_size 64 --layer_size [64,64,64] --lr 0.0005 --save_flag 1 --pretrain 0 --batch_size 1024 --epoch 200 --verbose 50 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1]

你可能感兴趣的:(笔记,人工智能,论文,anaconda,python)