使用函数cv2.imread(filepath,flags)
读入一副图片,可以按照不同模式读取,一般最常用到的是读取单通道灰度图,或者直接默认读取多通道。
filepath:要读入图片的完整路径
flags:读入图片的标志
cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道
cv2.IMREAD_GRAYSCALE:读入灰度图片
cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道
import cv2
img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE)
使用函数cv2.imshow(wname,img)
显示图像,第一个参数是显示图像的窗口的名字,第二个参数是要显示的图像(imread读入的图像),窗口大小自动调整为图片大小
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
#dv2.destroyWindow(wname)
-cv2.waitKey顾名思义等待键盘输入,单位为毫秒,即等待指定的毫秒数看是否有键盘输入,若在等待时间内按下任意键则返回按键的ASCII码,程序继续运行。若没有按下任何键,超时后返回-1。参数为0表示无限等待。不调用waitKey的话,窗口会一闪而逝,看不到显示的图片。
使用函数cv2.imwrite(file,img,num)
保存一个图像。
注意存的时候是没有单通道这一说的,根据保存文件名的后缀和当前的array维度,OpenCV自动判断存的通道,另外压缩格式还可以指定存储质量
第一个参数是要保存的文件名;
第二个参数是要保存的图像;
第三个参数,可选,它针对特定的格式:
注意:
cv2.imwrite('1.png',img, [int( cv2.IMWRITE_JPEG_QUALITY), 95])
cv2.imwrite('1.png',img, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
示例:
读入一副图像,按’s’键保存后退出,其它任意键则直接退出不保存
import cv2
img = cv2.imread('1.jpg',cv2.IMREAD_UNCHANGED)
cv2.imshow('image',img)
k = cv2.waitKey(0)
if k == ord('s'): # wait for 's' key to save and exit
cv2.imwrite('1.png',img)
cv2.destroyAllWindows()
else:
cv2.destroyAllWindows()
使用函数cv2.flip(img,flipcode)翻转图像,flipcode控制翻转效果:
flipcode = 0:沿x轴翻转
flipcode > 0:沿y轴翻转
flipcode < 0:x,y轴同时翻转
imgflip = cv2.flip(img,1)
imgcopy = img.copy()
cv2.COLOR_X2Y表示转换方式,
其中X,Y = RGB, BGR, GRAY, HSV, YCrCb, XYZ, Lab, Luv, HLS
#彩色图像转为灰度图像
img2 = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
#灰度图像转为彩色图像
img3 = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
import cv2
# 读取一张400x600分辨率的图像
color_img = cv2.imread('test_400x600.jpg')
print(color_img.shape)
# 直接读取单通道
gray_img = cv2.imread('test_400x600.jpg', cv2.IMREAD_GRAYSCALE)
print(gray_img.shape)
# 把单通道图片保存后,再读取,仍然是3通道,相当于把单通道值复制到3个通道保存
cv2.imwrite('test_grayscale.jpg', gray_img)
reload_grayscale = cv2.imread('test_grayscale.jpg')
print(reload_grayscale.shape)
# cv2.IMWRITE_JPEG_QUALITY指定jpg质量,范围0到100,默认95,越高画质越好,文件越大
cv2.imwrite('test_imwrite.jpg', color_img, (cv2.IMWRITE_JPEG_QUALITY, 80))
# cv2.IMWRITE_PNG_COMPRESSION指定png质量,范围0到9,默认3,越高文件越小,画质越差
cv2.imwrite('test_imwrite.png', color_img, (cv2.IMWRITE_PNG_COMPRESSION, 5))
import cv2
# 读取一张四川大录古藏寨的照片
img = cv2.imread('tiger_tibet_village.jpg')
# 缩放成200x200的方形图像
img_200x200 = cv2.resize(img, (200, 200))
# 不直接指定缩放后大小,通过fx和fy指定缩放比例,0.5则长宽都为原来一半
# 等效于img_200x300 = cv2.resize(img, (300, 200)),注意指定大小的格式是(宽度,高度)
# 插值方法默认是cv2.INTER_LINEAR,这里指定为最近邻插值
img_200x300 = cv2.resize(img, (0, 0), fx=0.5, fy=0.5,
interpolation=cv2.INTER_NEAREST)
# 在上张图片的基础上,上下各贴50像素的黑边,生成300x300的图像
img_300x300 = cv2.copyMakeBorder(img, 50, 50, 0, 0,
cv2.BORDER_CONSTANT,
value=(0, 0, 0))
# 对照片中树的部分进行剪裁
patch_tree = img[20:150, -180:-50]
cv2.imwrite('cropped_tree.jpg', patch_tree)
cv2.imwrite('resized_200x200.jpg', img_200x200)
cv2.imwrite('resized_200x300.jpg', img_200x300)
cv2.imwrite('bordered_300x300.jpg', img_300x300)
import cv2
# img=cv2.imread('1.jpg',cv2.IMREAD_COLOR)
img=cv2.imread('1.png',cv2.IMREAD_COLOR) # 打开文件
font = cv2.FONT_HERSHEY_DUPLEX # 设置字体
# 图片对象、文本、像素、字体、字体大小、颜色、字体粗细
imgzi = cv2.putText(img, "zhengwen", (1100, 1164), font, 5.5, (0, 0, 0), 2,)
# cv2.imshow('lena',img)
cv2.imwrite('5.png',img) # 写磁盘
cv2.destroyAllWindows() # 毁掉所有窗口
cv2.destroyWindow(wname) # 销毁指定窗口
感谢:OpenCV-Python在图片上输出中文
OpenCV中在图片上输出中文一般需要借助FreeType库实现。FreeType库是一个完全免费(开源)的、高质量的且可移植的字体引擎,它提供统一的接口来访问多种字体格式文件。但使用FreeType需要下载库并重新编译,过程麻烦一点。
在Python中,可以借助PIL(Python Imaging Library)模块实现,相对简单很多,需要做的只是对图像进行OpenCV格式和PIL格式的相互转换。
字体 *.ttc的存放路径一般是: /usr/share/fonts/opentype/noto/
也可以使用locate指令查找本机上已经下载的字体:
# -*- coding: utf-8 -*-
import cv2
import numpy
from PIL import Image, ImageDraw, ImageFont
if __name__ == '__main__':
img_OpenCV = cv2.imread('01.jpg')
# 图像从OpenCV格式转换成PIL格式
img_PIL = Image.fromarray(cv2.cvtColor(img_OpenCV, cv2.COLOR_BGR2RGB))
# 字体 字体*.ttc的存放路径一般是: /usr/share/fonts/opentype/noto/ 查找指令locate *.ttc
font = ImageFont.truetype('NotoSansCJK-Black.ttc', 40)
# 字体颜色
fillColor = (255,0,0)
# 文字输出位置
position = (100,100)
# 输出内容
str = '在图片上输出中文'
# 需要先把输出的中文字符转换成Unicode编码形式
if not isinstance(str, unicode):
str = str.decode('utf8')
draw = ImageDraw.Draw(img_PIL)
draw.text(position, str, font=font, fill=fillColor)
# 使用PIL中的save方法保存图片到本地
# img_PIL.save('02.jpg', 'jpeg')
# 转换回OpenCV格式
img_OpenCV = cv2.cvtColor(numpy.asarray(img_PIL),cv2.COLOR_RGB2BGR)
cv2.imshow("print chinese to image",img_OpenCV)
cv2.waitKey()
cv2.imwrite('03.jpg',img_OpenCV)
import numpy as np
import cv2
np.set_printoptions(threshold='nan')
# 创建一个宽512高512的黑色画布,RGB(0,0,0)即黑色
img=np.zeros((512,512,3),np.uint8)
# 画直线,图片对象,起始坐标(x轴,y轴),结束坐标,颜色,宽度
cv2.line(img,(0,0),(311,511),(255,0,0),10)
# 画矩形,图片对象,左上角坐标,右下角坐标,颜色,宽度
cv2.rectangle(img,(30,166),(130,266),(0,255,0),3)
# 画圆形,图片对象,中心点坐标,半径大小,颜色,宽度
cv2.circle(img,(222,222),50,(255.111,111),-1)
# 画椭圆形,图片对象,中心点坐标,长短轴,顺时针旋转度数,开始角度(右长轴表0度,上短轴表270度),颜色,宽度
cv2.ellipse(img,(333,333),(50,20),0,0,150,(255,222,222),-1)
# 画多边形,指定各个点坐标,array必须是int32类型
pts=np.array([[10,5],[20,30],[70,20],[50,10]], np.int32)
# -1表示该纬度靠后面的纬度自动计算出来,实际上是4
pts = pts.reshape((-1,1,2,))
# print(pts)
# 画多条线,False表不闭合,True表示闭合,闭合即多边形
cv2.polylines(img,[pts],True,(255,255,0),5)
#写字,字体选择
font=cv2.FONT_HERSHEY_SCRIPT_COMPLEX
# 图片对象,要写的内容,左边距,字的底部到画布上端的距离,字体,大小,颜色,粗细
cv2.putText(img,"OpenCV",(10,400),font,3.5,(255,255,255),2)
a=cv2.imwrite("picture.jpg",img)
cv2.imshow("picture",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import numpy as np
import cv2
# 定义一块宽600,高400的画布,初始化为白色
canvas = np.zeros((400, 600, 3), dtype=np.uint8) + 255
# 画一条纵向的正中央的黑色分界线
cv2.line(canvas, (300, 0), (300, 399), (0, 0, 0), 2)
# 画一条右半部份画面以150为界的横向分界线
cv2.line(canvas, (300, 149), (599, 149), (0, 0, 0), 2)
# 左半部分的右下角画个红色的圆
cv2.circle(canvas, (200, 300), 75, (0, 0, 255), 5)
# 左半部分的左下角画个蓝色的矩形
cv2.rectangle(canvas, (20, 240), (100, 360), (255, 0, 0), thickness=3)
# 定义两个三角形,并执行内部绿色填充
triangles = np.array([
[(200, 240), (145, 333), (255, 333)],
[(60, 180), (20, 237), (100, 237)]])
cv2.fillPoly(canvas, triangles, (0, 255, 0))
# 画一个黄色五角星
# 第一步通过旋转角度的办法求出五个顶点
phi = 4 * np.pi / 5
rotations = [[[np.cos(i * phi), -np.sin(i * phi)], [i * np.sin(phi), np.cos(i * phi)]] for i in range(1, 5)]
pentagram = np.array([[[[0, -1]] + [np.dot(m, (0, -1)) for m in rotations]]], dtype=np.float)
# 定义缩放倍数和平移向量把五角星画在左半部分画面的上方
pentagram = np.round(pentagram * 80 + np.array([160, 120])).astype(np.int)
# 将5个顶点作为多边形顶点连线,得到五角星
cv2.polylines(canvas, pentagram, True, (0, 255, 255), 9)
# 按像素为间隔从左至右在画面右半部份的上方画出HSV空间的色调连续变化
for x in range(302, 600):
color_pixel = np.array([[[round(180*float(x-302)/298), 255, 255]]], dtype=np.uint8)
line_color = [int(c) for c in cv2.cvtColor(color_pixel, cv2.COLOR_HSV2BGR)[0][0]]
cv2.line(canvas, (x, 0), (x, 147), line_color)
# 如果定义圆的线宽大于半斤,则等效于画圆点,随机在画面右下角的框内生成坐标
np.random.seed(42)
n_pts = 30
pts_x = np.random.randint(310, 590, n_pts)
pts_y = np.random.randint(160, 390, n_pts)
pts = zip(pts_x, pts_y)
# 画出每个点,颜色随机
for pt in pts:
pt_color = [int(c) for c in np.random.randint(0, 255, 3)]
cv2.circle(canvas, pt, 3, pt_color, 5)
# 在左半部分最上方打印文字
cv2.putText(canvas,
'Python-OpenCV Drawing Example',
(5, 15),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1)
cv2.imshow('Example of basic drawing functions', canvas)
cv2.waitKey()
import cv2
import time
interval = 60 # 捕获图像的间隔,单位:秒
num_frames = 500 # 捕获图像的总帧数
out_fps = 24 # 输出文件的帧率
# VideoCapture(0)表示打开默认的相机
cap = cv2.VideoCapture(0)
# 获取捕获的分辨率
size =(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# 设置要保存视频的编码,分辨率和帧率
video = cv2.VideoWriter(
"time_lapse.avi",
cv2.VideoWriter_fourcc('M','P','4','2'),
out_fps,
size
)
# 对于一些低画质的摄像头,前面的帧可能不稳定,略过
for i in range(42):
cap.read()
# 开始捕获,通过read()函数获取捕获的帧
try:
for i in range(num_frames):
_, frame = cap.read()
video.write(frame)
# 如果希望把每一帧也存成文件,比如制作GIF,则取消下面的注释
# filename = '{:0>6d}.png'.format(i)
# cv2.imwrite(filename, frame)
print('Frame {} is captured.'.format(i))
time.sleep(interval)
except KeyboardInterrupt:
# 提前停止捕获
print('Stopped! {}/{} frames captured!'.format(i, num_frames))
# 释放资源并写入视频文件
video.release()
cap.release()
import os
import cv2
# tkinter是Python内置的简单GUI库,实现一些比如打开文件夹,确认删除等操作十分方便
from tkFileDialog import askdirectory
from tkMessageBox import askyesno
# 定义标注窗口的默认名称
WINDOW_NAME = 'Simple Bounding Box Labeling Tool'
# 定义画面刷新的大概帧率(是否能达到取决于电脑性能)
FPS = 24
# 定义支持的图像格式
SUPPOTED_FORMATS = ['jpg', 'jpeg', 'png']
# 定义默认物体框的名字为Object,颜色蓝色,当没有用户自定义物体时用默认物体
DEFAULT_COLOR = {'Object': (255, 0, 0)}
# 定义灰色,用于信息显示的背景和未定义物体框的显示
COLOR_GRAY = (192, 192, 192)
# 在图像下方多出BAR_HEIGHT这么多像素的区域用于显示文件名和当前标注物体等信息
BAR_HEIGHT = 16
# 上下左右,ESC及删除键对应的cv.waitKey()的返回值
# 注意这个值根据操作系统不同有不同,可以通过6.4.2中的代码获取
KEY_UP = 65362
KEY_DOWN = 65364
KEY_LEFT = 65361
KEY_RIGHT = 65363
KEY_ESC = 27
KEY_DELETE = 65535
# 空键用于默认循环
KEY_EMPTY = 0
get_bbox_name = '{}.bbox'.format
# 定义物体框标注工具类
class SimpleBBoxLabeling:
def __init__(self, data_dir, fps=FPS, window_name=None):
self._data_dir = data_dir
self.fps = fps
self.window_name = window_name if window_name else WINDOW_NAME
#pt0是正在画的左上角坐标,pt1是鼠标所在坐标
self._pt0 = None
self._pt1 = None
# 表明当前是否正在画框的状态标记
self._drawing = False
# 当前标注物体的名称
self._cur_label = None
# 当前图像对应的所有已标注框
self._bboxes = []
# 如果有用户自定义的标注信息则读取,否则用默认的物体和颜色
label_path = '{}.labels'.format(self._data_dir)
self.label_colors = DEFAULT_COLOR if not os.path.exists(label_path) else self.load_labels(label_path)
# 获取已经标注的文件列表和还未标注的文件列表
imagefiles = [x for x in os.listdir(self._data_dir) if x[x.rfind('.') + 1:].lower() in SUPPOTED_FORMATS]
labeled = [x for x in imagefiles if os.path.exists(get_bbox_name(x))]
to_be_labeled = [x for x in imagefiles if x not in labeled]
# 每次打开一个文件夹,都自动从还未标注的第一张开始
self._filelist = labeled + to_be_labeled
self._index = len(labeled)
if self._index > len(self._filelist) - 1:
self._index = len(self._filelist) - 1
# 鼠标回调函数
def _mouse_ops(self, event, x, y, flags, param):
# 按下左键时,坐标为左上角,同时表明开始画框,改变drawing标记为True
if event == cv2.EVENT_LBUTTONDOWN:
self._drawing = True
self._pt0 = (x, y)
# 左键抬起,表明当前框画完了,坐标记为右下角,并保存,同时改变drawing标记为False
elif event == cv2.EVENT_LBUTTONUP:
self._drawing = False
self._pt1 = (x, y)
self._bboxes.append((self._cur_label, (self._pt0, self._pt1)))
# 实时更新右下角坐标方便画框
elif event == cv2.EVENT_MOUSEMOVE:
self._pt1 = (x, y)
# 鼠标右键删除最近画好的框
elif event == cv2.EVENT_RBUTTONUP:
if self._bboxes:
self._bboxes.pop()
# 清除所有标注框和当前状态
def _clean_bbox(self):
self._pt0 = None
self._pt1 = None
self._drawing = False
self._bboxes = []
# 画标注框和当前信息的函数
def _draw_bbox(self, img):
# 在图像下方多出BAR_HEIGHT这么多像素的区域用于显示文件名和当前标注物体等信息
h, w = img.shape[:2]
canvas = cv2.copyMakeBorder(img, 0, BAR_HEIGHT, 0, 0, cv2.BORDER_CONSTANT, value=COLOR_GRAY)
# 正在标注的物体信息,如果鼠标左键已经按下,则显示两个点坐标,否则显示当前待标注物体的名称
label_msg = '{}: {}, {}'.format(self._cur_label, self._pt0, self._pt1) \
if self._drawing \
else 'Current label: {}'.format(self._cur_label)
# 显示当前文件名,文件个数信息
msg = '{}/{}: {} | {}'.format(self._index + 1, len(self._filelist), self._filelist[self._index], label_msg)
cv2.putText(canvas, msg, (1, h+12),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 0, 0), 1)
# 画出已经标好的框和对应名字
for label, (bpt0, bpt1) in self._bboxes:
label_color = self.label_colors[label] if label in self.label_colors else COLOR_GRAY
cv2.rectangle(canvas, bpt0, bpt1, label_color, thickness=2)
cv2.putText(canvas, label, (bpt0[0]+3, bpt0[1]+15),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, label_color, 2)
# 画正在标注的框和对应名字
if self._drawing:
label_color = self.label_colors[self._cur_label] if self._cur_label in self.label_colors else COLOR_GRAY
if self._pt1[0] >= self._pt0[0] and self._pt1[1] >= self._pt0[1]:
cv2.rectangle(canvas, self._pt0, self._pt1, label_color, thickness=2)
cv2.putText(canvas, self._cur_label, (self._pt0[0] + 3, self._pt0[1] + 15),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, label_color, 2)
return canvas
# 利用repr()导出标注框数据到文件
@staticmethod
def export_bbox(filepath, bboxes):
if bboxes:
with open(filepath, 'w') as f:
for bbox in bboxes:
line = repr(bbox) + '\n'
f.write(line)
elif os.path.exists(filepath):
os.remove(filepath)
# 利用eval()读取标注框字符串到数据
@staticmethod
def load_bbox(filepath):
bboxes = []
with open(filepath, 'r') as f:
line = f.readline().rstrip()
while line:
bboxes.append(eval(line))
line = f.readline().rstrip()
return bboxes
# 利用eval()读取物体及对应颜色信息到数据
@staticmethod
def load_labels(filepath):
label_colors = {}
with open(filepath, 'r') as f:
line = f.readline().rstrip()
while line:
label, color = eval(line)
label_colors[label] = color
line = f.readline().rstrip()
return label_colors
# 读取图像文件和对应标注框信息(如果有的话)
@staticmethod
def load_sample(filepath):
img = cv2.imread(filepath)
bbox_filepath = get_bbox_name(filepath)
bboxes = []
if os.path.exists(bbox_filepath):
bboxes = SimpleBBoxLabeling.load_bbox(bbox_filepath)
return img, bboxes
# 导出当前标注框信息并清空
def _export_n_clean_bbox(self):
bbox_filepath = os.sep.join([self._data_dir, get_bbox_name(self._filelist[self._index])])
self.export_bbox(bbox_filepath, self._bboxes)
self._clean_bbox()
# 删除当前样本和对应的标注框信息
def _delete_current_sample(self):
filename = self._filelist[self._index]
filepath = os.sep.join([self._data_dir, filename])
if os.path.exists(filepath):
os.remove(filepath)
filepath = get_bbox_name(filepath)
if os.path.exists(filepath):
os.remove(filepath)
self._filelist.pop(self._index)
print('{} is deleted!'.format(filename))
# 开始OpenCV窗口循环的方法,定义了程序的主逻辑
def start(self):
# 之前标注的文件名,用于程序判断是否需要执行一次图像读取
last_filename = ''
# 标注物体在列表中的下标
label_index = 0
# 所有标注物体名称的列表
labels = self.label_colors.keys()
# 待标注物体的种类数
n_labels = len(labels)
# 定义窗口和鼠标回调
cv2.namedWindow(self.window_name)
cv2.setMouseCallback(self.window_name, self._mouse_ops)
key = KEY_EMPTY
# 定义每次循环的持续时间
delay = int(1000 / FPS)
# 只要没有按下Esc键,就持续循环
while key != KEY_ESC:
# 上下键用于选择当前标注物体
if key == KEY_UP:
if label_index == 0:
pass
else:
label_index -= 1
elif key == KEY_DOWN:
if label_index == n_labels - 1:
pass
else:
label_index += 1
# 左右键切换当前标注的图片
elif key == KEY_LEFT:
# 已经到了第一张图片的话就不需要清空上一张
if self._index > 0:
self._export_n_clean_bbox()
self._index -= 1
if self._index < 0:
self._index = 0
elif key == KEY_RIGHT:
# 已经到了最后一张图片的话就不需要清空上一张
if self._index < len(self._filelist) - 1:
self._export_n_clean_bbox()
self._index += 1
if self._index > len(self._filelist) - 1:
self._index = len(self._filelist) - 1
# 删除当前图片和对应标注信息
elif key == KEY_DELETE:
if askyesno('Delete Sample', 'Are you sure?'):
self._delete_current_sample()
key = KEY_EMPTY
continue
# 如果键盘操作执行了换图片,则重新读取,更新图片
filename = self._filelist[self._index]
if filename != last_filename:
filepath = os.sep.join([self._data_dir, filename])
img, self._bboxes = self.load_sample(filepath)
# 更新当前标注物体名称
self._cur_label = labels[label_index]
# 把标注和相关信息画在图片上并显示指定的时间
canvas = self._draw_bbox(img)
cv2.imshow(self.window_name, canvas)
key = cv2.waitKey(delay)
# 当前文件名就是下次循环的老文件名
last_filename = filename
print('Finished!')
cv2.destroyAllWindows()
# 如果退出程序,需要对当前进行保存
self.export_bbox(os.sep.join([self._data_dir, get_bbox_name(filename)]), self._bboxes)
print('Labels updated!')
if __name__ == '__main__':
dir_with_images = askdirectory(title='Where are the images?')
labeling_task = SimpleBBoxLabeling(dir_with_images)
labeling_task.start()
https://www.cnblogs.com/shizhengwen/p/8719062.html
https://blog.csdn.net/li_huifei/article/details/78347654