复合函数的结合律证明

复合函数结合律证明

  • 定义
  • 性质

定义

f : D ↦ E f:D\mapsto E f:DE是一个映射, g : G ↦ H g:G\mapsto H g:GH也是一个映射。如果 f ( D ) ⊂ G f(D)\subset G f(D)G,则从 ξ ∈ D \xi\in D ξD开始,相继经 f f f g g g的作用,就得到 g ( f ( ξ ) ) g(f(\xi)) g(f(ξ))这样的对应关系: ξ ↦ g ( f ( ξ ) ) \xi\mapsto g(f(\xi)) ξg(f(ξ)),也是一个映射,我们把这个映射称为 g g g f f f的复合,记作 g ∘ f g\circ f gf
简言之,映射 g g g与映射 f f f的复合定义为:
g ∘ f : D ↦ H , ξ ↦ g ( f ( ξ ) ) . g\circ f:D\mapsto H,\\ \xi \mapsto g(f(\xi)). gf:DH,ξg(f(ξ)).
例:设 f : R ↦ R f:\mathbb{R} \mapsto \mathbb{R} f:RR定义为 f ( x ) = x m f(x)=x^{m} f(x)=xm,则有
f ∘ f ( x ) = f ( f ( x ) ) = ( x m ) m = x m 2 f\circ f(x)=f(f(x))=(x^{m})^{m}=x^{m^2} ff(x)=f(f(x))=(xm)m=xm2

例:设 f ( x ) = x 2 f(x)=x^2 f(x)=x2 g ( x ) = s i n x g(x)=sinx g(x)=sinx,计算 g ∘ f g\circ f gf f ∘ g f\circ g fg
解: g ∘ f ( x ) = g ( f ( x ) ) = s i n ( x 2 ) = s i n x 2 g\circ f(x)=g(f(x))=sin(x^2)=sinx^2 gf(x)=g(f(x))=sin(x2)=sinx2 f ∘ g ( x ) = f ( g ( x ) ) = ( s i n x ) 2 = s i n 2 x f\circ g(x)=f(g(x))=(sinx)^2=sin^2x fg(x)=f(g(x))=(sinx)2=sin2x

性质

1.对于映射 f f f和映射 g g g,两种顺序的复合映射 g ∘ f g\circ f gf f ∘ g f\circ g fg不一定都有意义,即使有意义也不一定相同;
2.映射的复合满足结合律,即 ( f ∘ g ) ∘ h = f ∘ ( g ∘ h ) (f\circ g) \circ h=f\circ (g\circ h) (fg)h=f(gh)
证明: ( f ∘ g ) ∘ h = f ∘ ( g ∘ h ) (f\circ g)\circ h=f\circ (g\circ h) (fg)h=f(gh)
证: ( f ∘ g ) ∘ h = f ( g ( x ) ) ∘ h = f ( g ( h ( x ) ) ) (f\circ g)\circ h=f(g(x))\circ h=f(g(h(x))) (fg)h=f(g(x))h=f(g(h(x))) f ∘ ( g ∘ h ) = f ∘ ( g ( h ( x ) ) ) = f ( g ( h ( x ) ) ) f\circ (g\circ h)=f\circ (g(h(x)))=f(g(h(x))) f(gh)=f(g(h(x)))=f(g(h(x)))
∴ ( f ∘ g ) ∘ h = f ∘ ( g ∘ h ) \therefore (f\circ g)\circ h=f\circ(g\circ h) (fg)h=f(gh),证毕。
证(详细版):
∵ f ∘ g = f ( g ( x ) ) \because f\circ g=f(g(x)) fg=f(g(x)),令 u = f ( g ( x ) ) , ∴ ( f ∘ g ) ∘ h = u ∘ h = u ( h ( x ) ) u=f(g(x)),\therefore (f\circ g)\circ h=u\circ h=u(h(x)) u=f(g(x))(fg)h=uh=u(h(x))
∵ g ∘ h = g ( h ( x ) ) \because g\circ h=g(h(x)) gh=g(h(x)),令 v = g ( h ( x ) ) , ∴ f ∘ ( g ∘ h ) = f ∘ v = f ( v ( x ) ) v=g(h(x)),\therefore f\circ (g\circ h)=f\circ v=f(v(x)) v=g(h(x))f(gh)=fv=f(v(x))
进行变量代换,得:
u ( h ( x ) ) = f ( g ( h ( x ) ) , f ( v ( x ) ) = f ( g ( h ( x ) ) , ∴ u ( h ( x ) ) = f ( v ( x ) ) u(h(x))=f(g(h(x)),f(v(x))=f(g(h(x)), \therefore u(h(x))=f(v(x)) u(h(x))=f(g(h(x)),f(v(x))=f(g(h(x)),u(h(x))=f(v(x)),即 ( f ∘ g ) ∘ h = f ∘ ( g ∘ h ) (f\circ g)\circ h=f\circ (g\circ h) (fg)h=f(gh),证毕。

你可能感兴趣的:(数学分析,函数,学习)