MIoU(均交并比)的计算

文章目录

  • 1 交并比(Intersection over Union,IoU)
    • 1.1 传统 IoU
    • 1.2 语义分割中的IoU
    • 1.3 语义分割中的MIoU
  • 2 MIoU 的计算
    • 2.1 MIoU 的计算
    • 2.2 MIoU 计算实例

1 交并比(Intersection over Union,IoU)

1.1 传统 IoU

MIoU(均交并比)的计算_第1张图片

公式: S A ∪ B = S A + S B − S A ∩ B \rm S_{A\cup B}=S_{A}+S_{B}-S_{A\cap B} SAB=SA+SBSAB

1.2 语义分割中的IoU

MIoU(均交并比)的计算_第2张图片

  语义分割问题中的两个集合为:真实值(ground truth)和预测值(predicted segmentation)。这个比例可以变形为正真数(intersection)比上真正、假负、假正(并集)之和。在每个类上计算IoU,之后平均。

1.3 语义分割中的MIoU

  均交并比(Mean Intersection over Union,MIoU):语义分割的标准度量,计算所有类别交集和并集之比的平均值

2 MIoU 的计算

2.1 MIoU 的计算

  以pascal数据集为例,其包含 21个 类别, 分别对每个类别求 I o U IoU IoU 。令 k k k 表示类别 ( k + 1 ) (k+1) (k+1) 表示加上了背景类, i i i 表示真实值, j j j 表示预测值, p i j p_{ij} pij 表示将 i i i 预测为 j j j,则某一类别的 M I o U MIoU MIoU 可按如下方式计算:
M I o U = 1 k + 1 ∑ i = 0 k p i i ∑ i = 0 k p i j + ∑ i = 0 k p j i − p i i MIoU = \frac{1}{k+1}\sum_{i=0}^{k} \frac{p_{ii}}{\sum_{i=0}^{k}p_{ij}+\sum_{i=0}^{k}p_{ji}-p_{ii}} MIoU=k+11i=0ki=0kpij+i=0kpjipiipii
其中, p i j p_{ij} pij i i i 预测为 j j j,为假负(FN); p j i p_{ji} pji j j j 预测为 i i i,为假正(FP); p i i p_{ii} pii i i i 预测为 i i i,为真正(TP)。因此,可等价于

MIoU(均交并比)的计算_第3张图片

(正类:类别 i i i, 负类:非类别 i i i
TP(真正): 预测正确, 预测结果 = 真实 = 正类 ;
FP(假正): 预测错误, 预测结果 = 正类 ≠ \ne = 真实 = 负类;
FN(假负): 预测错误, 预测结果 = 负类 ≠ \ne = 真实 = 正类;
TN(真负): 预测正确, 预测结果 = 负类 = 真实 = 负类;

M I o U = 1 k + 1 ∑ i = 0 k T P F N + F P + T P MIoU = \frac{1}{k+1}\sum_{i=0}^{k} \frac{TP}{FN+FP+TP} MIoU=k+11i=0kFN+FP+TPTP
M I o U MIoU MIoU :计算两圆交集(橙色部分)与两圆并集(红色+橙色+黄色)之间的比例,理想情况下两圆重合,比例为 1。

2.2 MIoU 计算实例

步骤 1:求混淆矩阵

混淆矩阵:表示预测值和真实值之间的差距的矩阵,形式如下
[ T P ( 真 正 ) F N ( 假 负 ) F P ( 假 正 ) T N ( 真 负 ) ] \left[ \begin{array} l TP(真正)& FN(假负) \\ FP(假正) & TN(真负) \end{array} \right ] [TPFPFNTN]

MIoU(均交并比)的计算_第4张图片

步骤 2:计算 MIoU

混淆矩阵的每一行(FN+TP)再加上每一列(FP+TP),最后减去对角线上(TP)的值:
M I o U = 1 k + 1 ∑ i = 0 k 第   i   个 对 角 线 上 的 值 第   i   行 的 值 + 第   i   列 的 值 − 第   i   个 对 角 线 上 的 值 MIoU = \frac{1}{k+1}\sum_{i=0}^{k} \frac{第~i~个对角线上的值}{第~i~行的值+第~i~列的值-第~i~个对角线上的值} MIoU=k+11i=0k i + i  i 线 i 线

计算 MIoU 例子源码

参考

  1. 语义分割代码阅读—评价指标mIoU的计算;
  2. 语义分割指标计算之miou(交并比);
  3. 混淆矩阵是什么意思?

你可能感兴趣的:(分割与抠图,MIoU)